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Abstract

Effective air quality management and forecasting in Beijing is urgently

needed as the region suffers from the worst air pollution in any standards.

However, the statistical mechanism of the PM2.5 formation with respec-

t to various factors is under-explored in this region and China in gener-

al. Through an elaborate application with refinement of a spatio-temporal

model with varying coefficients to the dynamics of PM2.5 around Beijing

based on a large data set, we provide a comprehensive interpretation for

the dynamics of PM2.5 concentration with respect to its gaseous precursors,

meteorological conditions and geographical variables. Furthermore, we con-

duct multi-step temporal forecasts on a rolling basis for both the PM2.5

concentration and the pollution levels. With the help of the expectation-

maximization algorithm, the proposed models estimated for eight seasons
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from March 2015 to February 2017 around Beijing provide satisfactory in-

sample fits and generate more accurate out-of-sample forecasts, compared

with Finazzi and Fassò’s original model as well as other alternative mod-

els. Valuable insights in tackling the excessive air pollution in Beijing are

suggested from the comprehensive application of our model.

Keywords: Air pollution, expectation-maximization algorithm, random

effects, rolling prediction.

1 Introduction

Air pollution has been a worldwide concern, and that in China is particularly

pressing in terms of severity and spatial coverage in recent years. Beijing, the

capital of China, is situated in a region that has endured the worst air pollution

even in the Chinese standard. Air pollutants, especially the fine particulate matter

PM2.5 (fine particulate matter with a diameter of 2.5 micrometres or less), are

known to cause harm to human health. PM2.5 can penetrate deep into the lungs,

blood vessels and other organs of human beings, and can aggravate heart and

lung diseases when inhaled (Pope III et al., 2002; Yeatts et al., 2007). Besides,

the adverse health outcomes of exposure in air pollution, e.g., respiratory diseases

(Shao et al., 2010) and low birth weight (Berrocal et al., 2011), have been quantified

by researchers.

Public attention and the adverse health effect of air pollution has motivated

the studies on the triggers of PM2.5 in China. Most studies are based on real-time

measurements with a set of state-of-the-art instruments. Among many others, Guo

et al. (2014) studied the haze episodes in 2013 fall and elucidated the dominat-
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ing effect of meteorological conditions and secondary formation on haze pollution,

while the effects from primary emissions and regional transport of PM2.5 were

found to be insignificant; Sun et al. (2015) conducted a year-long investigation of

the different variations and formation processes among aerosol particle species, as

well as uncovered impacts of several meteorological factors (relative humidity, tem-

perature and wind) on aerosol loading. Previous environmental science research

mainly studies the composition properties of aerosol particles and their interac-

tion with meteorological factors through real-time measurements. Such research

usually restricts the observations to a certain sampling site, and cannot untangle

the different extents of impact among the various factors simultaneously.

As Beijing in China has been suffering from severe air pollution in these years,

we seriously need an effective statistical model to interpret the influencing mech-

anism and predict the extent of the city’s air pollution. In this work, we perform

a comprehensive study with elaborate parametric statistical models to uncover

the influences of a large number of environmental factors on PM2.5 concentra-

tion, reveal space-time dependence structures, and provide predictions over time

in Beijing. While Liang et al. (2015, 2016) and Chen et al. (2018) have conduct-

ed statistical analyses on air quality data in various parts of China, they mainly

focused on air quality assessments using nonparametric models.

The present study aims at attaining a suitable model for studying PM2.5 in

Beijing, which can be used to offer environmental interpretation for policy purpos-

es and to do predictions. We will build a spatio-temporal statistical model, since

it can incorporate the spatiotemporal dependence structure (Cressie and Wikle,

2011, Chap. 1), as well as account for the influences of various covariates. The liter-
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ature abounds with applications of spatio-temporal models to air quality data (i.e.,

the recent ones including Calculli et al. (2015), Cheam et al. (2017), Nicolis et al.

(2019), Clifford et al. (2019), and Padilla et al. (2020)). For example, Cheam

et al. (2017) applied an EM algorithm to the inference of a parametric spatio-

temporal mixture model used for clustering the air quality data. Clifford et al.

(2019) conducted Bayesian inference based on a semi-parametric spatio-temporal

model for the airborne particulate matter concentration, with nonparametric tem-

poral trends and the spatial random effect approximated using Gaussian Markov

Random Fields (GMRF). These studies put more concerns on flexibility of models

and computation, but they did not consider the environmental covariates which

play an important role in triggering air pollution (Chen et al., 2015; Cai et al.,

2017), and they did not apply the model to generate predictions. In addition, some

studies developed spatio-temporal models with environmental covariates involved

and used them for space-time predictions (Calculli et al., 2015; Nicolis et al., 2019;

Padilla et al., 2020), however in contrast to our proposed model, they did not take

varying coefficients into account.

Specifically, the model in our study is set up based on Fassò and Finazzi (2013)

and Finazzi and Fassò (2014), which contains a spatially correlated random field

and a separate latent temporal dynamic, and allows for stochastically varying co-

efficients to incorporate the interaction between spatial random effects and time-

invariant covariates. In addition, the proposed model extends that of Finazzi and

Fassò (2014), in that we incorporate the lag-one concentrations of PM2.5 as well as

other gaseous pollutants as covariates. We demonstrate that the improvement over

the model framework in Finazzi and Fassò (2014) is substantial in terms of fitting
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and prediction accuracy after including the lagged response as an autoregressive

term. Such an adjustment is also suitable for situations in Beijing, as much heavier

air pollution and the dense human socio-economic activities around Beijing make

air pollution less likely to dilute quickly and thus more time-persistent. The in-

clusion of lagged gaseous pollutants better accounts for the secondary formation

of PM2.5.

By analyzing a quite large data set that consists of two years’ hourly air quality

data from 35 monitoring sites together with meteorological data from 15 weather

observation stations and gridded geographical data, we establish the validity of

our model through interpretation of the influencing mechanism of PM2.5 dynamics

as well as the temporal forecasting performance. The first part is aimed at investi-

gating various driving factors of PM2.5 formation, where we obtain satisfactory in-

sample fits that outperform other alternatives using the proposed spatio-temporal

model with the EM algorithm on a seasonal basis. In addition, we also demonstrate

the model fitting performance if removing different model components including

the lagged response and random effects, so that we can understand which compo-

nent plays more important roles. In the second part, we perform an out-of-sample

multi-step temporal prediction for both the PM2.5 concentration and the severity

levels for PM2.5, with the model fitted on a rolling basis for each season. The

out-of-sample forecasts of the proposed model outperform those obtained from the

original model in Finazzi and Fassò (2014) as well as the simple AR(1) model.

The rest part of the paper is organized as follows. Section 2 gives a description

of data in the study region and provides the motivation for the proposed spatio-

temporal model with an insightful data exploration. In Section 3, we establish
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the spatio-temporal model, and introduce the EM algorithm for the maximum

likelihood estimation. Section 4 shows the results of applying the model to our

data in Beijing region. In Subsection 4.1 we fit the model on a seasonal basis,

and provide the detailed interpretation of environmental covariates’ contributions

to the dynamics of PM2.5 in Beijing. We further show the importance of different

model components based on a comparative assessment of fitting performances.

In Subsection 4.2, we illustrate the methodology and results of the out-of-sample

rolling prediction. Section 5 provides the conclusion and discussion of our study.

2 Data And Pre-analysis Exploration

2.1 Data Description

The primary endpoint is the concentration of PM2.5, which is collected hourly from

35 air-quality monitoring stations operated by Beijing Municipal Environmental

Monitoring Center (BMEMC). The 35 air-quality monitoring stations are associ-

ated with specific latitudes and longitudes and denoted by D = {s1, . . . , s35}. The

PM2.5 concentration is measured in microgram per cubic meter of air (µg/m3) and

collected from March 1st, 2015 to February 28th, 2017, which encompasses two

seasonal years with eight seasons.

For explanatory variables, first we include the PM2.5 concentration from the

previous hour, since PM2.5 is temporally persistent. In addition, a portion of

PM2.5 can be attributed to the atmospheric chemical reactions involving gaseous

pollutants. In line with the choice of other pollutants in Liang et al. (2015) and

Chen et al. (2018), we consider four gaseous pollutants of SO2, NO2, O3 and CO.
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In particular, we use the lag-one (previous hour) concentrations of these pollutants

as covariates, which would account for the secondary formation of PM2.5. They

are also collected hourly and obtained from 35 air-quality monitoring stations.

Previous studies have found significant meteorological influence on PM2.5. For

example, Liang et al. (2015) showed that meteorological variables could explain

78% of PM2.5 variation on average in their nonparametric model fitting. In this

study, according to previous studies on Chinese air quality in Zhang et al. (2017a)

and Chen et al. (2018), we consider the following meteorological variables: air

temperature in degree Celsius, air pressure in hectopascal, dew point tempera-

ture in degree Celsius, integrated precipitation in millimeter, and cumulative wind

speed in meter per second on four combined wind directions (“SE” for southeast,

“SW” for southwest, “NE” for northeast and “NW” for northwest). They are

obtained from 15 weather stations belonging to China Meteorological Administra-

tion (CMA) and are matched to the 35 monitoring sites according to Table S1 in

Zhang et al. (2017b). In addition to the variables used in the previous studies,

we also consider boundary layer height in kilometer, as it mainly influences the

vertical dissipation of particulate matter (Tang et al., 2016; Miao et al., 2015). It

is collected from ERA-Interim of the European Centre for Medium-Range Weather

Forecasts (ECMWF) at a grid size of 0.125◦ × 0.125◦, with a detailed description

of the dataset found in Xu et al. (2020). We depict the spatial locations of the

35 air-quality monitoring stations along with the 15 weather stations in Figure

1. The altitudes of the monitoring sites are obtained from Google Maps over the

region (39.4◦N–40.7◦N, 115.8◦E–117.4◦E) at a grid size of 0.01◦ × 0.01◦.

Due to Beijing’s the semi-open geographical configuration with mountains in
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Figure 1: Locations of the 35 air-quality monitoring stations (red dots) along with

the 15 weather observing stations (blue triangles) around Beijing. West and north

of Beijing are mountains, while south and east of Beijing are open plains.

the west and north, in addition we consider two geographical variables: altitude in

kilometer and distance to mountains in kilometer. As shown in Figure 1, the areas

near mountains may suffer from more serious air pollution, as the mountains can

easily trap pollutants (Sun et al., 2006). By defining the locations with altitude

higher than 500 meters as mountains, we attain the distance from each monitoring

station to its nearest mountain.

Since the distributions of PM2.5, four gaseous pollutants, wind speed and

boundary layer height tend to be skewed, we take the logarithm transformations

for these variables. Particularly, the log-transformation of wind speed is made

after adding 1, as it contains a proportion of zero values. After that, all variables

are standardized with their seasonal means and standard deviations.

As 5.1% of the PM2.5 concentration, 4.8% of the four gaseous precursors and
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3.5% of meteorological variables are missing, for each monitoring site, we conduc-

t linear imputation for those variables with no more than 12 continuous hours

missing, otherwise we impute with the weighted mean of the corresponding ob-

servations using data of the nearest 20% stations with the weights being inversely

proportional to the distances.

2.2 Pre-analysis Exploration

In this section, we do some data exploration and demonstrate the motivation for

adopting the spatio-temporal Model (1), which we will set up in Section 3.1. First

we explore the distributions of PM2.5 concentration for the eight seasons in the

two seasonal years. The box plots are presented in Figure 2. From the figure, we

can see that there exist consistently strong seasonal patterns, where winters suffer

most severe pollution with large mean and variability, and summers are relatively

relieved with smaller mean and variation. This motivates us to construct distinct

models for the eight seasons from March 2015 to February 2017.

For each season studied, we retrieve the variance inflation factors (V IF ) of

all covariates mentioned above from the diagonal elements of the inverse sample

correlation matrix (Belsley et al., 2005). The V IF s with respect to the covariates

are not exceeding 5 after taking average over the eight seasons, which relaxes our

concern of collinearity.

In addition, to see the importance of modeling with time-dependent dynamics,

we plot sample partial autocorrelations (PAC) in Figure 3, for the raw log-PM2.5

concentrations in Panels (a), (c) and residuals after we fit a linear AR(1) Model

(3) with the covariates we consider in Panels (b), (d), respectively. Each box-plot
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Figure 2: Box plots of PM2.5 concentration (µg/m3) in Beijing for the eight sea-

sonal periods from March 2015 to February 2017. Black bars inside the boxes are

the medians, and the dashed bars are the means.

in Figure 3 is constructed based on the PACs of the 35 time series from different

monitoring sites. We demonstrate results from the first and the last seasonal period

in the two years from 2015 to 2016, respectively. Other seasonal periods have

similar patterns. First, Panels (a), (c) show a significantly large lag-one PAC for

the raw data for all 35 monitoring sites, suggesting an autoregressive component

in the model. Next, Panels (b), (d) indicate that there exists time-dependent

random effect, which possesses a relatively pronounced first-order autocorrelation,

contributing to the variabilities of PM2.5 which can not be fully explained by its

autoregressive component as well as other covariates.

Besides, we present the spatial sample correlation of the fitted residuals of

Model (3) in Figure 4. It is easily found that the correlation between residuals at

two monitoring sites declines as their distance increases. It thus motivates us to

incorporate a spatially-dependent random effect in the model to account for the
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(a) Raw data, 2015 spring
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(b) Residuals, 2015 spring
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(c) Raw data, 2016 winter
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(d) Residuals, 2016 winter

Figure 3: Sample partial autocorrelation (PAC) box-plots of (a), (c) raw log- PM2.5

concentrations, and (b), (d) residuals after fitting a linear AR(1) Model (3) with

covariates. Panels at the top (bottom) show the results for the spring (winter) of

seasonal year 2015 (2016), with similar patterns for other seasons. Each box-plot

displays PACs obtained for each of the 35 monitoring sites.

spatial correlation structure of estimates in different locations.
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(a) Residuals, 2015 spring
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(b) Residuals, 2016 winter

Figure 4: Spatial sample correlation of the fitted residuals of a linear AR(1) Model

(3) with covariates between two monitoring sites with respect to their distance.

Here we only show the model fitting result for the spring of seasonal year 2015 and

the winter of seasonal year 2016, as other seasons have similar patterns.

3 Method

3.1 The Spatio-temporal Model

For each season in Beijing, we build a spatio-temporal model with varying coeffi-

cients, which can incorporate the dependencies among space and time, as well as

the interaction between spatial random effects and time-invariant covariates.

Specifically, denoting y(s, t) the log-PM2.5 concentration at site s ∈ D and time

t ∈ {1, . . . , T}, we assume an AR(1) model with covariates and latent random
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effects:

y(s, t) = y(s, t− 1)β0 + x′g(s, t− 1)βg + x′m(s, t)βm

+xAlt(s)(βAlt + α1w1(s, t)) + xDist(s)(βDist + α2w2(s, t))

+z(t) + ε(s, t), (1)

z(t) = gz(t− 1) + η(t), z(0) ∼ N(µ0, σ
2
0),

where xg(s, t − 1) is a vector of four lag-one gaseous pollutants accounting for

the secondary formation of PM2.5, and xm(s, t) is a vector of nine meteorological

variables at time t. Note that the covariates are random in nature, and we consider

the conditional inference by conditioning on the random covariates, which is similar

to treat the covariates as fixed in standard regression. Moreover, according to the

previous work which uses lagged responses as covariates in time series models

(see, e.g., Li (1994) and Brumback et al. (2000)), we add the lagged log-PM2.5

y(s, t − 1) as an autoregressive term to account for the temporal persistence of

PM2.5 generation process.

In the model, xAlt(s) and xDist(s) are respectively altitude and distance to

mountains, for which we use βAlt and βDist to represent their global (space and

time independent) effect, and use wj(s, t), j = 1, 2 as location-specific (spatial)

random effects. We assume that wj(s, t) with j = 1, 2 are mutually independent

and temporally uncorrelated Gaussian random fields with zero mean, unit variance

and an exponential spatial correlation function in the form of ρ(‖s − s′‖; θj) =

exp(−‖s − s′‖/θj), with ‖s − s′‖ denoting the distance between two location-

s s and s′. Such simple exponential correlation function as a special form of

the Matérn correlation family is commonly adopted in applications of spatially-
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dependent models (see, e.g., Sahu (2012) and Finazzi and Fassò (2014)). Scale

parameters αj and θj respectively control variability and correlation decaying rate

of the random effects wj(s, t). We introduce wj(s, t) into Model (1) to account

for location-specific effects, so that it is flexible to model additional variations in

data. Since we have non-replicated spatio-temporal data, “borrowing strength”

from neighboring sample points is more efficient in parameter estimation, given

that the spatial correlation structure is pre-determined in certain forms.

The time-dependent random variable z(t) represents the other time-dependent

influential factors which are not considered in the model. We assume it to be

a Markovian dynamic with time-independent innovation η(t) ∼ N(0, σ2
η). The

AR(1) coefficient g quantifies the persistency in z(t)’s variability overtime, and we

require that |g| < 1 for stationarity.

Lastly, the measurement error ε(s, t) is assumed to be a zero-mean Gaussian

white noise with a variance σ2
ε . It can be seen as a random effect describing

uncertainties that cannot be fully explained by the other components of the model.

Under the model setup, the parameters to be estimated are

Ψ = (α,β, σ2
ε ;θ; g, σ2

η;µ0, σ
2
0),

with scale parameters α = (α1, α2), θ = (θ1, θ2) and regression coefficients β =

(β0,β
′
g,β

′
m, βAlt, βDist)

′. Our main interest lies in the estimation and inference of

β.
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3.2 The Expectation Maximization Algorithm

In the model fitting procedure, the expectation maximization (EM) algorithm

(Dempster et al., 1977) is employed to obtain the maximum likelihood estimate

(MLE) of the parameter vector Ψ. The expectation step (E-step) of the mth

EM iteration requires computing the expectation of “complete-data” log-likelihood

l(Ψ;Y,W,Z) conditioned on the observed data {Y,X} based on the current es-

timate Ψ̂(m−1), that is,

Q(Ψ, Ψ̂(m−1)) = EΨ̂(m−1) [l(Ψ;Y,W,Z) | Y,X] ,

where Y, W, Z and X represent the responses, spatial random effects, temporal

random effects and covariates in Model (1), respectively. We emphasize that,

though we add the lagged response to the covariates X in Model (1), Q(Ψ, Ψ̂(m−1))

takes the same expression with respect to {Y,X} as that obtained from Finazzi

and Fassò (2014). Thus our refinement of the model makes no difference from the

perspective of estimation with the EM algorithm. To be specific, the computation

of Q(Ψ, Ψ̂(m−1)) requires the conditional distribution of the random effects Z and

W given observed data, which are obtained respectively by the Kalman smoother

and the well-known formulas of multivariate normal distribution respectively, as

detailed in Fassò and Finazzi (2011).

Then at the maximization step (M-step), we aim at finding the mth update of

MLE Ψ̂:

Ψ̂(m) = arg max
Ψ

Q(Ψ, Ψ̂(m−1)).

The EM algorithm stops when the update of parameter vector is significant-

ly small. The model fitting procedures are implemented based on the D-STEM
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software (Finazzi and Fassò, 2014).

4 Results

4.1 Model Fitting and Interpretation

4.1.1 Model Fitting Results

The model parameter estimates together with their levels of significance are p-

resented in Tables 1 and 2. Figure 5 provides a contrast of the magnitudes of

estimated coefficients of gaseous pollutants, meteorological and geographical vari-

ables.

[Table 1 about here.]

[Table 2 about here.]

Generally speaking, almost all predictors in the proposed model are significant,

showing the the formation of PM2.5 is affected by multi-factors. Note that all the

regressors have been standardized, contributions of each predictor are hence com-

parable. First, Tables 1 and 2 show that the PM2.5 concentration from last hour

contribute the most to the current PM2.5 level. The average AR(1) coefficient for

eight seasons is 0.674 with a standard deviation of 0.048, indicating a strong au-

tocorrelation. This is not surprising for hourly concentration, and echoes findings

from other studies, e.g. Liang et al. (2015).

Second, Figure 5 shows that among the four gaseous precursors, CO is the

most influential one affecting PM2.5. CO is usually from traffic-related emissions
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Figure 5: Radar plots of coefficient estimates of gaseous pollutants, meteorological

and geographical variables in seasonal years 2015 and 2016, with the grid lines of

zero highlighted in bold black.
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and fossil fuel combustion, which makes significant contribution to the particulate

matter pollution (Guo et al., 2014; Liu et al., 2015). More importantly, CO is a

strong indicator of transported pollutant from outside of Beijing area, as it has

quite long life span— it can stay in the air for almost a month (Chen et al.,

2003; Weinstock, 1969). Between NO2 and SO2, the increase in concentration

of NO2 leads to a larger increase in PM2.5 concentration than that of SO2 in all

seasons except spring which includes the burning period in March. As NO2 is

mainly generated from motor vehicle emission while SO2 is associated with coal

combustion in power plants and winter heating (Duan et al., 2006), the result

indicates that motor vehicle emission has overtaken the coal combustion to become

a more dominant emission source since 2015. The inconsistent signs of coefficients

of O3 between the two studied years indicate that O3 displays a more complex

relationship with PM2.5, which may depend on other factors such as photochemical

processes driven by solar radiation (Meng et al., 1997).

Third, Figure 5 shows the meteorological variables explaining a large part of

PM2.5 variation too. Among them the dew point temperature has the strongest

and positive effect, which is indicated by a significantly larger magnitude of co-

efficients in comparison with other factors. This can be explained by the fact

that dew point is a meteorological variable highly dependent on humidity and the

temperature, both of which promote the formation of the secondary aerosols, and

thus particulate matters (Yang et al., 2011). Besides, precipitation has a promi-

nent effect on scavenging particulate matters, in that it is conducive to not only

depositing particulate matter but also reducing the suspension of fugitive dust (Hu

et al., 2006; Li et al., 2015). The correlation between temperature and air pol-
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lution has a seasonal pattern. In summer, PM2.5 concentration rises with higher

temperature, as the summer in Beijing is humid and high temperature enhances

the efficiency of secondary fine particulate matter formations (Chen et al., 2003).

But in the other seasons, higher temperature (usually in the afternoon) increases

the boundary layer height which in turn increases the vertical dispersion of air

pollutants (Ito et al., 2007; Lin et al., 2009). The surface air pressure is found to

have a negative effect on PM2.5 concentration in general, which is similar to the

findings in Liang et al. (2015). In addition, we find that the air pressure is not

always significant and has the weakest meteorological effect on PM2.5.

Furthermore, the boundary layer height (BLH) has a significant negative effect

on PM2.5 concentration. This supports the claim that relatively higher BLH leads

to better vertical dispersion conditions of pollutants, while the lower BLH exac-

erbates air pollution in all seasons (Miao et al., 2015). Northerly (NW and NE)

and southerly (SE and SW) winds have distinct effects on the pollution level. As

Beijing’s major sources of industrial pollution are from the south where a great

many heavy industries are situated, a southerly wind can exacerbate air pollution

by bringing the polluted air, and the pollution may remain trapped within the city

because of the mountain ranging in the north and west of Beijing. Fortunately,

the cleaner and drier wind from the north can help dilute PM2.5 (Liang et al.,

2015; Zhang et al., 2017a). Hence, lowering emission loading from industrialized

southern regions would help to lower Beijing’s air pollution level.

We note that the two geographical variables— altitude and distance to moun-

tains, also have significant impacts on PM2.5 concentrations. Locations with higher

altitude tend to have better dispersion condition and thus have lower pollution lev-
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el as compared to those locations with lower altitude, which are usually featured

by stable atmosphere and strong temperature inversions (Chan et al., 2005). At

the mean time, the mountainous topology in the north and west brings about

north-northeasterly mountain-valley breezes, which makes the pollutant emissions

from Beijing prone to disperse towards the southeastern plain (Zhao et al., 2009).

In addition, the heavy emissions to the south of Beijing further exacerbate the

accumulation of air pollutants (Zhang et al., 2013). Hence the southern districts

far from mountains suffer more severe pollution than those near mountains.

The estimation results also support the necessity of random effects in Model

(1). The average estimate of g among eight seasons is 0.877 with a standard

deviation of 0.038, indicating a strong temporal persistency of the latent Markovian

dynamic in z(t). Estimates of the scale parameters θj, j = 1,2, are all above 50.

Compared with the average distance 41.2km between monitoring stations, it shows

a slow decaying rate of spatial correlation of latent random fields wj(s, t) as the

distance increases. Figure 6 supports this observation by showing the sample

correlations between the fitted random components ŵj(s, t) and ŵj(s
′, t) over all

pairs of stations {s, s′}. Recall that wj(s, t) are location-specific random effects for

geographical variables, the strong spatial dependence displays a relatively steady

nonlocal contribution from geographical variables to local PM2.5 concentrations.
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Figure 6: Spatial sample correlation of the fitted random fields ŵ1(s, t) and ŵ2(s, t)

between two monitoring sites with respect to their distance. Here we only show

the model fitting result for the spring of seasonal year 2015, as other seasons have

similar patterns.

4.1.2 Model Assessment

To further demonstrate the benefits of the lagged PM2.5 term and random effect

components of Model (1), we compare it with four other models:

y(s, t) = x′g(s, t− 1)βg + x′m(s, t)βm + xAlt(s)(βAlt + α1w1(s, t)) (2)

+xDist(s)(βDist + α2w2(s, t)) + z(t) + ε(s, t),

y(s, t) = y(s, t− 1)β0 + x′g(s, t− 1)βg + x′m(s, t)βm (3)

+xAlt(s)βAlt + xDist(s)βDist + ε(s, t),

y(s, t) = y(s, t− 1)β0 + x′g(s, t− 1)βg + x′m(s, t)βm (4)

+xAlt(s)βAlt + xDist(s)βDist + z(t) + ε(s, t),

y(s, t) = y(s, t− 1)β0 + x′g(s, t− 1)βg + x′m(s, t)βm (5)

+xAlt(s)(βAlt + α1w1(s, t)) + xDist(s)(βDist + α2w2(s, t)) + ε(s, t).
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Here Model (2) is the original model in Finazzi and Fassò (2014) with the lagged

PM2.5 term in Model (1) excluded from the covariates. Model (3) – (5) are relative-

ly parsimonious in terms of the random effects compared to Model (1). Specifically,

Model (3) includes no random effects, Model (4) includes no spatially correlated

random component wj(s, t) for j = 1, 2, and Model (5) includes no temporal ran-

dom effect z(t).

We assess the fitting ability of these models with the root mean square error

(RMSE),

RMSEfit =

{
1

nT

n∑
i=1

T∑
t=1

(
Y (si, t)− Ŷ (si, t)

)2
} 1

2

, (6)

where n = 35. The fitted value Ŷ (si, t) of PM2.5 concentration at site si and time

t ∈ {1, . . . , T} is obtained from the log-standardized fitting given by

ŷ(si, t) = x′(si, t)β̂ + ẑTt + α̂1xAlt(si)Ê(w1(si, t)|Y) + α̂2xDist(si)Ê(w2(si, t)|Y),

with x(s, t) being the standardized covariate vector (including the lagged response

variable), β̂, α̂1, α̂2 being the estimated parameters, ẑTt = EΨ̂(z(t)|Y) being the

Kalman-smoothed state of the temporal random effect z(t), and Ê(wj(si, t)|Y) =

EΨ̂(wj(si, t)|Y) being the estimated state of the jth spatial random effect, which

is obtained from the properties of multivariate normal distribution.

The RMSEs of Models (1) – (5) are obtained from (6) and shown in Table 3,

along with the standard deviations of the raw data which are the fitting RMSEs

without any model used. Though the five models all present small fitting errors

compared to the raw standard deviations, the proposed Model (1) demonstrates the

best fitting performance. Note that Model (4) displays smaller fitting RMSEs than

Model (5), which indicates that the temporal random effect z(t) contributes more
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to fitting accuracy than the location-specific one. Moreover, Model (2) is inferior

in fitting accuracy to the alternative models, which demonstrates the necessity of

including the lagged PM2.5 concentration as a covariate in our case.

Furthermore, to gain a better understanding of the improvement in fitting after

allowing for the lagged PM2.5 concentration as a covariate, we conduct a compar-

ative study of the parameter estimates between Model (1) and Model (2). Firstly,

the estimates of g from the latter model, which represents the AR(1) coefficient of

the temporal random effect z(t), get notably larger and even approaching 1. The

average estimate among eight seasons is 0.975 with a standard deviation of 0.01.

This indicates that modeling the time persistence of PM2.5 concentration with on-

ly a latent autoregressive dynamic z(t) may not be adequate for such extensive

data in our study, as such large AR(1) coefficient makes z(t) approach a unit-root

process which is highly unstationary with a long memory. Besides, without the

lagged PM2.5 concentration as a covariate, the estimated standard errors of most

parameters get larger, in particular for the β coefficients of covariates, which sug-

gests that Model (2) is less stable. In the following section, we will show that our

proposed model also has better out-of-sample prediction ability than this model.

[Table 3 about here.]

4.2 Out-of-sample Temporal Prediction

In this section, we look into the out-of-sample forecasting performance for the

proposed spatio-temporal Model (1). For each season, we use the data of the last

30 days (with T1 = 720 hours) as the testing set, and the rest as the training set
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(with T0 = 1488 hours in springs and summers, 1464 hours in autumns and 2015

winter, and 1440 hours in 2016 winter).

We conduct a rolling prediction in an iterative way. Each time we move the

training set forward by one hour while keeping a fixed time window of training

observations (T0 hours). We fit the proposed Model (1) as well as Model (2) in

Finazzi and Fassò’s framework, and then predict PM2.5 values for 1, 2 and 3 hours

forward in the out-of-sample. We also use a simple AR(1) model as a benchmark

for comparison, where we assume that the dynamic of log-standardized PM2.5

concentration y(s, t) at site s and time t follows an AR(1) process

y(s, t) = β0y(s, t− 1) + ε(s, t),

with ε(s, t) a Gaussian white noise with zero mean.

Specifically, let ŶT0+r(si, T0+r+k) be the k-step forward prediction for the r-th

rolling at site si. The k-step rolling prediction root mean square error (RMSE) is

obtained after taking average on the testing set:

RMSEroll(k) =

{
n∑
i=1

T1−k∑
r=0

(
Y (si, T0 + r + k)− ŶT0+r(si, T0 + r + k)

)2
} 1

2

× (n(T1 − k + 1))−
1
2 . (7)

In the above equation, ŶT0+r(si, T0 + r + k) is obtained with the r-th k-step

rolling prediction of the log-standardized PM2.5 ŷT0+r(si, T0 + r + k), with respect

to time T0 + r + k and station si. The prediction is based on the model fitted to

data with a time span from r + 1 to T0 + r. For Model (1) prediction it is given

iteratively by

ŷT0+r(si, T0+r+k) = β̂0,(r)ŷT0+r(si, T0+r+k−1)+x′c(si, T0+r+k)β̂c,(r)+ĝ
k
(r)ẑ

T0+r
T0+r ,

(8)
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where xc(si, t) is the standardized covariate vector at time t apart from the lagged

log-transformed PM2.5, ẑT0+r
T0+r is the Kalman filter output of the r-th rolling fit, and

the parameter estimate for the r-th rolling procedure is denoted as Ψ̂(r) = (α̂(r),

β̂(r), σ̂
2
ε,(r); θ̂(r); ĝ(r), σ̂

2
η,(r); µ̂0,(r), σ̂

2
0,(r)), with β̂(r) = (β̂0,(r), β̂

′
c,(r))

′. For predicting

Model (2), the term β̂0,(r)ŷT0+r(si, T0 + r + k − 1) in (8) contributed by predicted

lagged log-standardized PM2.5 is leaved out. The predicted log-standardized PM2.5

from AR(1) model is simply obtained as following:

ŷT0+r(si, T0 + r + k) = β̂0,(r)ŷT0+r(si, T0 + r + k − 1).

Table 4 displays the one- to three-step forward rolling prediction RMSEs of each

season obtained from (7) comparing the three methods: Model (1), Model (2) and

the AR(1) model. The raw standard deviations (SD) of responses in the testing

sets of eight seasons are shown as a benchmark, and the average RMSEs and SD

over the eight seasons are also provided as a summary. We can easily see that the

proposed Model (1) produces overall smaller RMSEs for out-of-sample temporal

prediction up to three steps forward, compared to both Model (2) without allowing

for the lagged PM2.5 as a covariate and the simple AR(1) model without other

covariates as well as random effects. More specifically, compared to Model (2), the

proposed model improves the prediction accuracy in particular for the near future

after allowing for the AR(1) dependence of PM2.5. Besides, comparing the two

spatio-temporal Models (1) and (2) with the simple AR(1) model, we find that

the space-time dependence and the use of covariates in models help to improve the

accuracy of forecasts for relatively far forward. From Table 4, we can see that the

simple AR(1) model produces overall larger root mean square errors than those

obtained from Model (1) for two and three steps forward in particular, as well as
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in comparison with Model (2) for three steps forward.

Though the relatively large prediction RMSEs for the autumns and winters is

reconciled with the large variation and level of PM2.5 concentration in those periods

as shown in Table 4 and Figure 2, they sometimes exceed the ranges of some PM2.5

pollution levels and thus become less informative. In view of this, we also consider

the out-of-sample prediction for the PM2.5 pollution severity in terms of 7 different

levels according to the Air Quality Standard in China, with Levels 1–7 standing

for the PM2.5 concentration in µg/m3 falling inside the intervals [0, 35), [35, 75),

[75, 115), [115, 150), [150, 250), [250, 500) and [500,+∞), respectively. The out-of-

sample prediction for the PM2.5 levels is also studied in Gao et al. (2019)), whereas

they adopted a vector autoregressive model with no other covariates and is thus

lacking in interpretation for the dynamics of PM2.5 concentration. Table 5 presents

the percentages of correct one- to three-step forward rolling predictions at each

of the 7 levels as well as for overall levels over the two seasonal years consisting

of eight seasons, comparing Models (1), (2) and the simple AR(1) model. We

can obtain similar findings from Table 5 as above. The proposed Model (1) still

produces overall more accurate out-of-sample predictions for the PM2.5 pollution

levels in comparison with Model (2) and the AR(1) model.

The above comparisons among various models indicate the efficacy of the pro-

posed model in out-of-sample temporal prediction, and confirms the utility of

taking both AR(1) dynamics and space-time dependence of PM2.5 concentration

into consideration.

[Table 4 about here.]

[Table 5 about here.]
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5 Discussion

Our study shows that the spatio-temporal model with varying coefficients provides

us with a comprehensive description of the formation of PM2.5 in Beijing region

with satisfactory in-sample fitting. The estimates from the model offer valuable

insights in designing effective management strategies to alleviate air pollution in

Beijing. For example, we can draw focus on controlling motor vehicle emission

as we found that NO2 leads to a great increase in PM2.5 concentration in most

seasons. CO was also found to have large influence on PM2.5 concentration, which

has quite long life span and can be transported from outside of Beijing area. In

addition, the southerly wind was discovered to be mostly relevant to an increase

in air pollution. Hence, decreasing emission loadings from industrialized southern

regions will help to lower Beijing’s air pollution level.

We further establish the adequacy of the proposed model by demonstrating

its out-of-sample temporal predictions for both the PM2.5 concentration and the

pollution levels. Based on a rolling prediction for each studied season, the model

shows a decent forecasting performance, with the multi-step prediction accuracy

notably outperforming that of other existing methods including the original Finazzi

and Fassò (2014) model framework and the simple AR(1) model.

There also exist some limitations in the present study, which need to be cautious

about and potentially can be overcome in future studies. We note that, though

the proportion of the missing data is small, the imputation for missing covariates

(including the missing response of PM2.5 concentration) before modelling may

result in bias and sensitivity issues for inference. For potentially tackling the

missing data in the future, we suggest possible avenues are through making use of
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the space-time dependence structure of the missing response (Calculli et al., 2015;

Boaz et al., 2019; Padilla et al., 2020), or building a multiple regression model for

the missing covariates (Yi et al., 2011).
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Table 1: Parameter estimates of Model (1) and their levels of significance (* for
p-value <0.05; ** for p-value <0.01; *** for p-value <0.001) for four seasons in
seasonal year 2015, along with the fitting root mean square errors (RMSE) and
the standard deviations of PM2.5 (Raw SD).

covariates spring summer autumn winter

PM2.5(t–1) 0.589*** 0.639*** 0.708*** 0.685***
SO2(t–1) 0.050*** 0.007*** 0.025*** 0.026***
NO2(t–1) 0.035*** 0.034*** 0.031*** 0.029***
O3(t–1) -0.014*** -0.006** 0.01*** -0.008***
CO(t–1) 0.073*** 0.034*** 0.088*** 0.089***
Temperature -0.054*** 0.064*** -0.088*** -0.035***
Pressure 0.003 -0.011*** -0.011*** -0.031***
Precipitation -0.030*** -0.013*** -0.012*** -0.008***
Dew point 0.184*** 0.196*** 0.097*** 0.102***
Boundary layer height -0.047*** -0.024*** -0.045*** -0.055***
Wind speed (SE) 0.011*** 0.006*** 0.008*** 0.000
Wind speed (SW) 0.005* 0.004* 0.010*** 0.006***
Wind speed (NE) -0.014*** -0.009*** -0.013*** -0.019***
Wind speed (NW) -0.015*** -0.004* -0.011*** -0.023***
Altitude -0.007* 0.006* -0.026*** -0.036***
Distance to mountains 0.004* 0.014*** 0.011*** 0.007***

αAlt 0.064*** 0.060*** 0.043*** 0.036***
αDist 0.058*** 0.041*** 0.044*** 0.031***
θAlt 51.105*** 60.225*** 51.936*** 59.706***
θDist 55.326*** 62.430*** 63.734*** 71.859***
g 0.911*** 0.932*** 0.888*** 0.826***
σ2
η 0.008*** 0.008*** 0.005*** 0.005***

σ2
ε 0.088*** 0.091*** 0.059*** 0.052***

RMSE 15.728 11.428 17.579 25.233
Raw SD 61.310 44.027 89.025 120.754
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Table 2: Parameter estimates of Model (1) and their levels of significance (* for
p-value <0.05; ** for p-value <0.01; *** for p-value <0.001) for four seasons in
seasonal year 2016, along with the fitting root mean square errors (RMSE) and
the standard deviations of PM2.5 (Raw SD).

covariates spring summer autumn winter

PM2.5(t–1) 0.637*** 0.700*** 0.735*** 0.697***
SO2(t–1) 0.064*** 0.008*** 0.021*** 0.024***
NO2(t–1) 0.041*** 0.047*** 0.034*** 0.033***
O3(t–1) 0.005* 0.006*** 0.004* -0.012***
CO(t–1) 0.086*** 0.033*** 0.078*** 0.048***
Temperature -0.048*** 0.029*** -0.085*** -0.032***
Pressure -0.030*** -0.009** -0.011*** -0.018***
Precipitation -0.006*** -0.020*** -0.013*** -0.003
Dew point 0.120*** 0.138*** 0.130*** 0.102***
Boundary layer height -0.020*** -0.016** -0.027*** -0.063***
Wind speed (SE) 0.011** 0.002 0.001 0.001
Wind speed (SW) 0.009*** 0.004* 0.015*** 0.020***
Wind speed (NE) -0.012*** -0.010*** -0.016*** -0.020***
Wind speed (NW) -0.019*** -0.007*** -0.012*** -0.020***
Altitude -0.021*** 0.002 -0.013*** -0.021***
Distance to mountains 0.000 0.013*** 0.003* 0.003**

αAlt 0.050*** 0.053*** 0.056*** 0.039***
αDist 0.049*** 0.057*** 0.027*** 0.032***
θAlt 60.498*** 67.863*** 64.322*** 61.482***
θDist 66.365*** 59.98*** 59.903** 65.802***
g 0.849*** 0.908*** 0.846*** 0.853***
σ2
η 0.009*** 0.008*** 0.006*** 0.006***

σ2
ε 0.088*** 0.077*** 0.054*** 0.054***

RMSE 14.695 9.573 13.350 25.897
Raw SD 74.122 41.333 72.197 123.046
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Table 3: Root mean square fitting errors of the proposed Model (1), three of its
parsimonious versions (3) – (5), and Model (2) without lagged PM2.5 in covariates,
along with the standard deviations of the raw PM2.5 (Raw SD), for the eight
seasons.

models
Seasonal Year 2015 Seasonal Year 2016

Spring Summer Autumn Winter Spring Summer Autumn Winter

Model (1) 15.728 11.428 17.579 25.233 14.695 9.573 13.350 25.897
Model (4) 16.806 12.042 18.014 26.246 15.612 10.413 14.131 27.096
Model (5) 18.893 14.305 20.262 28.890 19.044 11.689 15.573 31.003
Model (3) 20.420 15.155 21.334 31.066 20.609 13.607 17.572 32.492
Model (2) 20.283 15.066 22.462 37.679 22.417 13.766 21.532 40.742

Raw SD 61.310 44.027 89.025 120.754 74.122 41.333 72.197 123.046
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Table 4: Root mean square errors (RMSE) of one-step, two-step and three-step for-
ward rolling predictions obtained with the proposed Model (1), Model (2) without
lagged PM2.5 in covariates, and the simple AR(1) model, along with the standard
deviations of the raw PM2.5 (Raw SD). The RMSEs and Raw SDs are computed
over the testing sets consisting of the last 30 days in each of the eight seasons
respectively as well as after taking averages.

models
Seasonal Year 2015 Seasonal Year 2016

Spring Summer Autumn Winter Spring Summer Autumn Winter mean
1-step 15.447 10.082 25.529 25.922 15.586 8.587 20.134 21.714 17.875

Model (1) 2-step 19.101 13.786 38.985 37.220 22.492 12.358 29.982 31.006 25.616
3-step 21.092 16.054 47.978 43.697 26.902 14.875 37.188 37.131 30.615
1-step 20.250 15.097 41.543 36.137 22.853 12.775 31.447 37.440 27.193

Model (2) 2-step 21.092 16.019 45.395 39.032 27.160 13.941 33.651 40.430 29.590
3-step 21.907 17.031 49.388 41.697 30.652 15.168 35.955 43.743 31.943
1-step 16.823 11.239 24.893 26.820 16.857 9.533 21.010 21.275 18.556

AR(1) 2-step 22.034 16.709 40.562 41.357 24.611 14.297 33.105 33.318 28.249
3-step 25.551 20.504 52.171 51.285 29.491 17.376 41.806 41.823 35.001

Raw SD 41.727 37.196 107.02 79.366 41.454 33.607 83.064 86.229 63.708
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Table 5: Percentages of correct one-step, two-step and three-step forward rolling
predictions for PM2.5 pollution levels obtained with the proposed Model (1), Model
(2) without lagged PM2.5 in covariates, and the simple AR(1) model. The per-
centages are computed with respect to the 7 different pollution levels respectively
as well as for overall levels, over the two seasonal years across the 35 stations.

models Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Level 7 All

1-step 93.6 81.4 74.1 59.8 76.1 70.3 61.7 83.3
Model (1) 2-step 90.0 74.7 63.4 44.8 64.0 55.4 44.5 76.1

3-step 87.3 70.6 57.1 35.5 54.5 44.4 38.3 71.3

1-step 91.3 71.9 59.8 41.0 61.0 59.6 45.5 75.1
Model (2) 2-step 90.2 69.7 56.4 37.8 57.3 56.5 40.7 72.9

3-step 89.0 67.1 53.5 35.2 53.9 53.4 36.2 70.8

1-step 92.5 81.1 71.9 56.5 75.6 68.9 67.8 82.2
AR(1) 2-step 88.0 73.5 57.2 35.9 60.7 46.1 46.8 72.9

3-step 84.2 68.9 46.2 25.0 48.6 30.2 23.3 66.4

Notes: In this table, Levels 1–7 stand for the PM2.5 concentration in µg/m3 falling inside the
intervals [0, 35), [35, 75), [75, 115), [115, 150), [150, 250), [250, 500) and [500,+∞), respectively.
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