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SUMMARY

When conducting line transect sampling to estimate the abundance of a clustered wildlife popu-
lation, detection of a school depends not only on the perpendicular distance of the school to the
transect line, but also on the size of school. Larger size schools are easier to detect than smaller
schools. Thus, a bivariate detection function with distance and size as covariates should be consid-
ered. This paper considers using the kernel smoothing method to fit the bivariate line transect data
in order to estimate both abundance and the mean school size. Two kernel estimators are studied:
the fixed kernel estimator, which uses the same smoothing bandwidth for all data points, and the
adaptive kernel estimator, which allows the bandwidth to vary across the data points.

1. Introduction

Line transect aerial surveys of commercially valuable southern bluefin tuna have been conducted
over the Great Australian Bight in summer, when the tuna tend to form schools and stay on the
surface. Surface tuna schools are detected by two experienced spotters on-board a light aircraft
flying along randomly allocated transect lines. A satellite-based Global Positioning System (GPS)
is used to measure the perpendicular distance from a detected school to the transect line. While
flying above a detected school, the spotters give independent estimates of the size of the school
(in tonnes), as the survey is more interested in the number of tonnes of tuna per unit area (i.e.,
the biomass density) than in schools per unit area. The spotters’ estimates of the size are based
on many years’ commercial spotting and learning from the catches of fishing boats. The aim of
the survey is to estimate the abundance of the tuna on the sea surface. This estimation serves as
a relative abundance index as long as the surveys are conducted in a consistent way from year to
year.

A tuna school of large size is more easily detected than a school of small size, given the same
perpendicular sighting distance. This is the so-called “size effect.” To correct this size effect, a
bivariate detection function g(z,s) should be considered. This is the probability of detecting a
school given that the perpendicular sighting distance is z and the school size is s. Drummer and
McDonald (1987) proposed parametric models for g(z, s) by inserting the size covariate into the
distance-only detection function. In their recent book on distance sampling, Buckland et al. (1993)
suggest regressing the school size s; (or log school size) on §(z;)—the estimated distance-only
detection function at z;. The nonparametric Fourier series (FS) method was used by Quang (1991)
to correct the size effect. In our aerial survey, the survey plane flies about 800 kilometers per
survey day between inshore and the continental shelf, and usually travels through different weather
conditions in terms of wind speed, cloud cover, glare, etc. The sighting function g(z, s) is subject
to changes in the weather. So nonparametric estimates, which are robust against changing g, are
sought.

With the aerial survey as background, this paper aims to develop nonparametric kernel estimates
for the biomass density and the mean school size of a clustered population by taking account of the

Key words: - Aerial survey; Biomass density; Bootstrap; Confidence intervals; Kernel method; Size-
biased sampling.
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size effect. Unlike the parametric line transect method, the kernel method does not need to assume
.a parametric detection function. Therefore, it is very much a data-oriented modeling approach, and
is robust against changing environmental survey conditions. Compared with the Fourier method,
the kernel method does not require an explicit truncation width in calculations, and produces real
probability density functions which are nonnegative and have an integral value of one. Another
advantage of the kernel method is that, by using a multivariate kernel, it can be generalized to
analyze data of three or four dimensions if other environmental variables are found to be significant
and are included in the detection function. :

Section 2 introduces some notation and outlines the problem. Section 3 gives a general description
of a kernel estimator. Section 4 describes two kernel estimators, the fixed and adaptive kernel
estimators. Section 5 shows bootstrap algorithms to estimate the variance and confidence intervals
for the biomass density and the mean school size. In Section 6 a data set from the tuna aerial survey
is used to illustrate the method. Section 7 presents some simulation results. A general discussion
is given in Section 8.

2. Notation and Outline

Assume the school size s is randomly distributed with the mean school size us = E(s). The total
biomass density D; is defined as Nus/A, where N is the total number of schools in the survey
area A. To estimate the density D and the mean school size us, randomly allocated transect lines
of total length L are traversed by observers to detect schools with maximum detection width w
on both sides. Suppose that n schools are detected independently, with the perpendicular sighting
distance and school size being recorded as (z1, $1),. .., (Zn, sn). We assume that g(0,s) = 1 for
any s > 0, which means certain detection of a school on the transect whatever its size. Let f(z,s)
be the joint probability density function (p.d.f.) from which the sample is drawn. We assume that
f satisfies the shoulder condition
Of(x,s) 0 and of(z,s)

9z =0 § s=0

=0. (2.1)

Let p be the probability of detecting a school in the survey area. As the transect lines are randomly
allocated, regardless of whether the schools are uniformly distributed or aggregated in the survey
area, we have E(n) = Np.

Following the derivations given by Drummer and McDonald (1987, p. 15, figures) and Quang
(1991),

Dy = (2L) ™" E(n)8(0),
where 8(0) = [5° sf(0, s) ds. Let 3(0) be an estimator for 4(0). Then, an estimator for D; is
D1 = (2L) "' nB(0). (2.2)

Let Do = N/2Lw = (2L) " E(n) f=(0) be the number of schools per unit area, where f; is the
marginal probability density function with respect to the sighting distance z. A generic estimator for
Dy has the form Do = (2L) ~'nf5(0). Various estimators for Dy have been given by using different
estimators for f;(0). See Seber (1982) and Buckland et al. (1993) for comprehensive reviews, and
Burnham, Anderson, and Laake (1980), Buckland (1992), and Chen (1996) for nonparametric
estimators.

Due to the size effect, the average size of the detected schools, n~! Y%, si, overestimates the
mean school size us. Since us = D1/Dg = B(0)/ fz(0), us should be estimated by

fis = B3(0)/ fz(0). (2.3)

From (2.2) and (2.3), we see that the critical part of establishing estimators for D; and ps is to
estimate (3(0), since various estimators for f»(0) are available. In this paper we use the kernel
method to estimate 8(0) by replacing f(0, s) with a kernel estimator in 5(0) = [5° sf(0, s) ds.

3. Kernel Estimator for 3(0)

A kernel estimator of the two dimensional p.d.f. f can be viewed as smoothing the histogram of
two dimensional data. However, instead of counting the number of observations falling into each
rectangular bin, we weight each data point by a two dimensional smoothing function centered at
the data point. For an independent sample of (z1,s1),..., (zn, sn) drawn from f, a general kernel
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estimator of f at (z,s) is defined as

n
4 y-1 T—x; S—8;
3" (hiihoi) W( e ) (3.1)

i=1

S~

f(xvs) =

where W is a kernel function that determines the shapes of the “bumps” centered at each data
point, and h1; and hg; are the smoothing bandwidths controlling the amount of smoothing in each
of the dimensions at data point (z;, s;).

There are basically two methods for choosing the bandwidths. One is to apply the same amount
of smoothing at all data points, which means h1; = hy and hg; = hs for all 4 and some hy and hs.
The other is to vary the bandwidths at each data point. We shall discuss these two approaches in
the next section. Before that, we use the general hi; and ho; in our derivation.

A simple way of defining the kernel W is to multiply a univariate kernel K with itself, that is

r—x; S§—8; r— X S — 8;
W( hi; h2i> K( hy; )K(hgi ) (3:2)
Usually the univariate kernel K is itself a p.d.f., as listed in Silverman (1986, p. 43). As Silverman
(1986) reported, there is not much to choose between various kernels, as they all contribute about
the same amount to the mean integrated square error. Therefore, we use only the product kernel
(3.2) with K (z) = (2m)"'/? exp(—z2/2) (the Gaussian kernel).
Some modifications have to be made before we apply the kernel estimator (3.1) to our line
transect data. The problem arises because all the distances are nonnegative while the sizes are
positive, that is #; > 0 and s; > 0. So f(z, s) should satisfy

flz,s)=0 if <0 or s<0. (3.3)

To make the kernel estimator satisfy (3.3), we reflect the sample twice by replacing each data pair
(i, 8;) by (x4, 8), (—xi, 8), (x;, —s;) and (—z;, —s;), which generalizes a proposal by Buckland
(1992) for univariate sighting data. Thus, we obtain an extended sample

Sl = {(331, 81), (—3’21, 81), (21:1, —81), (—.’171, —81), ceey
(1»'n, Sn), (—-'Bn, Sn), (l’n, _Sn), (—mn, —Sn)}-

The reflection of z; occurs because animal schools are sighted on both sides of the transect. If the
“signed perpendicular sighting distances,” where the signs indicate on which side of the transect
the schools were detected, are recorded in the original sample, we need only to reflect the s;. The
data reflection makes the resulting kernel estimate asymptotically unbiased. The real argument
behind this data reflection is that the p.d.f. f in line transect sampling usually has a wide shoulder
near z = 0 and a flat valley near s = 0, as assumed by (2.1).

Applying the kernel estimator to the extended sample S1, we have

flas) = Z nhihm [K (xf;j%) {K (Sf;zjl) K <S}j—;2)}

i=1
b () (i (322) +K(sh+;i)}} )

for £ > 0 and s > 0, and f(:r:,s) =0 for z < 0 or s <0. Since K is symmetric,

0= St () o (52 (22))

i=1

Then the kernel estimator for 5(0) is given by
+00

B(O)=/O Sf(O,s)ds:Zn:n_miTz;K(%) /0+°° S{K(sh—;i) +K(Sh+zji>} s

i=1

n 4 o si/ha; +o0
= E K(_l) Si/ K(u)du—{—hgi/ uK(u)du p .
— nhy hii 0 s

i/hoi
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As the Gaussian kernel is used, let ¢ and ® denote the density and the distribution functions for
an N(0, 1) random variable, respectively, then

b0 =" % 6(ws/h1i) [5:{® (51 /hai) — 1/2} + haih(si /hay)]- (35)

i=1

Since hg; is usually relatively small when L is large, we see ﬁ(O) is basically a weighted average of
the school sizes. This reflects the meaning of 5(0) = E{sf(0]s)}, which is the expected school size
weighted by the conditional probability density, given the school size, as noted in Quang (1991).

4. Fixed and Adaptive Kernel Estimators

Two kernel estimators for D; are introduced based on two approaches to select the smoothing
bandwidths hi; and ho; at (z;, s;). The first one is the fixed kernel method, which uses the same
bandwidths for smoothing at every data point. The second one is the adaptive kernel method, which
allows the bandwidths to vary from one data point to another. Both methods are conditional on
the sample size n.

4.1 Fized Kernel Estimator

The fixed kernel method uses the same bandwidths at all data points, that is h;; = h; and
ho; = hg for 1 < i < n. The common bar}dwidths h1 and ho are determined by minimizing the
mean integrated squared error (MISE) of f, that is

MISE(f; hi,hg) = /E{f(a:, s) — flz, )} dx ds.

The least-squares cross-validation (LSCV) and the reference to a standard distribution are two
popular methods for finding the optimal h; and hs that minimize the above MISE. General
descriptions of the two methods are given in Silverman (1986); those related to line transect
sampling are available in Chen (1996).

While the LSCV method provides generally robust estimates, it is computationally involved. In
contrast, the reference to a standard distribution method is simpler and performs reasonably well
if the assumed reference distribution is not too far away from the real underlying distribution. If f
is close to a bivariate normal distribution, according to Scott (1992, p. 151),

hi = ool — p2)5/2 1+ p2/2)—1/6 n1/6
and

hy = os(1— p2)>/2 (1 + p2/2) Y016, (4.1)

where o, and o are the standard deviations of x and s, respectively, and p is the correlation
coefficient between x and s. For line transect data, p2 is usually small. Thus, one can simply choose
hy = Ugm,_l/6 and ho = an_l/G. However, we use (4.1) for the sake of generality. For practical
use, we just replace oz, o5, and p by their sample estimates in (4.1). Only the original sample,
not the reflected sample, is used in computing the above sample estimates. According to (3.5), the
fixed kernel estimator for 3(0) is

Br() = 1 D7 dlai/h) [sil®(si/ha) ~ 1/2) + hao(si/ha)].
1=1

And the fixed kernel estimators for Dy and pus are
Dip = (L) 'nB(0) and fisy = f7(0)/fur(0),
where f, £(0) is a fixed kernel estimator for f(0) and is available in Chen (1996).
A derivation deferred to Appendix 1 shows that
E(Dy;) = D1 +bL™ 3 4 O(L7%/%), (4.2)

where b is some constant. Thus, D1 is an asymptotically unbiased estimator of D;. Its dominant
bias term is of order L™'/3. When L is not too large, a bias-corrected estimator could be proposed
by estimating the coefficient b. However, it would involve estimating the second order partial
derivatives of f. We shall show shortly that the adaptive kernel method makes this explicit bias
correction unnecessary.
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The bandwidths given by (4.1) are based on the global MISE criterion which aims to give a good
fit for the entire density surface. However, in the estimation of $(0), it is sufficient to fit f(0, s),
which is just a “slice” of the entire density surface. Therefore, a local bandwidth selection may be
more appropriate. This leads us to consider the following adaptive kernel method.

4.2 Adaptive Kernel Estimator

The adaptive kernel method (Abramson, 1982; Silverman, 1986) uses different bandwidths in
different parts of the density surface; larger bandwidths are used in low density areas, and smaller
ones in high density areas. To decide whether a data point is in a high or low density area, a
pilot-fixed kernel density estimate, say f, is computed. Then, a local smoothing weight at the ith
data point, say A;, is defined as \; = {f(wl, si)/G}fl/Q, where G is the geometric mean of f(a;l, S5).
Clearly, G is just a scaling factor to make the geometric mean of \; equal to 1. One way of choosing
the bandwidths at (z;, s;) is

h1; = Aih1  and  hg; = Ajho, (4.3)

where h; and hg are some fixed kernel bandwidths based on a criterion related to the global fit of
the density surface.
An adaptive kernel estimator for f(0,s) has the form

n
; -1 —2, -1, -1 T S — S5 S+ 85
$0,5) =2n Zl’\ hy i K(Aihl){K<,\ihg)“LK(/\ihg)}'
=

It has been shown that the adaptive kernel estimate is relatively insensitive to the pilot estimate
f (Silverman, 1986, p. 101). Therefore, f can be constructed by using just the bandwidth given in
(4.1). After the \; are obtained, LSCV could be used to determine h; and hg in (4.3). Silverman
(1986) suggested using (4.1) again as an “ad hoc” way of choosing h1 and hg. Simulation in Section
7 shows that this choice is satisfactory.

The adaptive kernel estimator for 3(0) is

Ba() = 2 57 AT o/ Ok )} i [Bs/ (o)} = 1/2] + Ashaosi/ (i)} |- (44)
i=1

The corresponding adaptive estimator for Dy is
D1, = (2L) " 'nB(0). -
A derivation deferred to Appendix 2 shows that
E(D1,) = Dy + o(L7/3). (4.5)

Comparing (4.2) and (4.5), we see that the asymptotic bias of D1, is only slightly smaller than
its fixed kernel counterpart D; ¢~ The derivation is based on the following latest result on adaptive
kernal estimation: if f has an exponentail tail, which is very typical for f in a line transect survey,
by extending Theorem 2.2 of Hall, Hu, and Marron (1995) to multivariate situations, we may have

2 2
E{f(0,5)In} = f(0,5) + O ({@%—1)} + {@’%ZT)} ) +O(hi + h3). (4.6)

The above result is a correction to some early results which claimed that the bias was O(h‘f + h3)
and ignored the first bias term in (4.6). As explained by Terrell and Scott (1992), the first bias
term in (4.6) is contributed by the tails of f. This is because if (z;,s;) is in the tail area of f,
f (x;,s;) will have a very small value and h; a very big value. The value of h; can be so big that
the bias term is not O(h$ + h3).

However, as observed by Terrell and Scott (1992) for small sample sizes, the influence of the
tail appears to be negligible and the bias looks to be O(h{ + h3) in many cases. They reported
that for a normal density function f, the adaptive estimator for f has significantly smaller mean
integrated squared error 4han its fixed kernel counterpart when n < 500. As the sample sizes from
a line transect survey are not likely to be large, the adaptive method will still be advantageous.
This is confirmed by our simulation study in Section 7.
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For large samples, the adaptive kernel estimator in its current form may not have any real
advantages over the fixed kernel estimator due to the tail effect. However, the tail effect can be
eliminated by either clipping the pilot density estimate f away from zero or truncating the kernel
functions. Interested readers should referr to Abramson (1982), Terrell and Scott (1992), and Hall
et al. (1995) for modified adaptive kernel estimation.

To obtain an adaptive estimator for the mean school size ps = 5(0)/fz(0), we have to construct
an adaptive kernel estimator for fz(0) based on the univariate sighting distances z1, ..., zn. Similar

to the bivariate adaptive kernel estimation, a pilot estimator fl for the univariate p.d.f. fp is
constructed with a bandwidth h = & n~'/%. The local smoothing weight v;, which is the equivalent
of A, is defined as v; = {f;f (a:i)/q}—l/Q, where ¢ is the geometrical mean of fz(z;). An adaptive
estimator for fz(0) is

T

n
2 -1 -1, -1
fra(0) =n ;ul h K(l/ih)’

where the same Gaussian kernel K is used here. Then, the adaptive kernel estimator for us is

ﬂsa = BG(O)/fIa(O)'

5. Variance Estimation and Confidence Intervals
Let 3(0) and D1, denote either the fixed or adaptive kernel estimators for 4(0) and D1, respectively.
Because E{n3(0)} ~ E(n)E{3(0)}, the correlation between n and ((0) is very small (Buckland et
al., 1993, p. 53). If the wildlife population is uniformly distributed, n is basically Poisson distributed,
that is var(n) = E(n). Then, an estimate for var(D}) is

(D) = D, Hj%o)i +n1] , ' (5.1)

where var{3(0)} estimates the variance of 5(0).
If the wildlife population tends to aggregate, n is no longer Poisson distributed. Usually data
show that var(n) = aE(n) for some a > 1. In this case, (5.1) becomes

G@i(Diy) = D, [A—ﬁ{f(—(%}— " aﬂn)} , (5.2)

where cv(n) estimates the coefficient of variation of n. To estimate cv(n), we need replicate line
information on the number of sightings made from each transect line and its length. The formula
given in Buckland et al. (1993, p. 90) can be used to compute cv(n).

To use (5.1) or (5.2), we need to estimate var{/3(0)}. But, an analytic expression for var{3(0)} is
difficult to obtain. This is because /3’ (0) is not an average of independént and identically distributed
random variables, due to the bandwidths being estimated from the data. To avoid this difficulty, we
suggest using a bootstrap method to estimate var{3(0)}. One primary motivation for the bootstrap,
as indicated by Efron (1982), is to estimate the variance of a statistic by Monte Carlo simulation
when its analytic solution is difficult to obtain. We give a bootstrap algorithm for estimating
var{(4(0)} only; that for var{,@f (0)} is easier and can be worked out in a similar way.

Step 1. Generate B independent bootstrap resamples of the original sighting sample {(z;, s;)}i—;.
Denote the bth resample as {(a;;'b, sfb) w,forb=1,...,B. Let oxb, a;b, and p*® be estimates of

2 2
oz, oy, and p, respectively, from the bth resample. Put A0 = (1= p*? )5/2 1+ p*® /2)"1/6.
Step 2. According to (4.1), use b}’ = 032 4**n~1/6 and h3’ = a;b 7*n=1/6 to construct a pilot
kernel density estimate f b and compute the weight /\fb. Then, choose the adaptive bandwidths
for smoothing at (1, 53%) to be h}? = A°Ab and hi? = A:Ph3P.

Step 8. Calculate the adaptive estimate (3:°(0) for B(0) for the bth resample according to (4.5)
with the bandwidths obtained in step 2.

Step 4. Repeat steps 2 and 3 for b=1,..., B, and obtain {B;b(())}le.
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The bootstrap estimate of var{3q(0)} is
B .
. 1 - = .
@t {Ba(0)} = 5— bz_;{ 2'(0) — £a (0},

where 3,(0) = B~! Efg:l B;b(O) Substitute the above bootstrap estimate for var{3.(0)} in (5.1)
or (5.2) to obtain var(Di,).

The derivation given in Appendix 3 shows that Dig is asymptotically normally distributed. Thus,
an a-level confidence interval for Dy can be constructed as

(Dm — z2\/Var(D1a), D1a + 2a )21/ @(ﬁm)) )

where z,, /2 1s the a/2 upper percentile point of the standard normal distribution.

Because fisq is the ratio of 34(0) to fza(0), it seems that the bootstrap approach is the only
reliable way to estimate the variance of fisq. The delta method could be used t6 approximate the
variance, but often has a large bias. A bootstrap procedure for calculating var(fisq) can be set up
by slightly modifying the bootstrap procedure for evaluating var{3(0)}. We only need to include
the computation of the adaptive kernel estimate for f.(0) for each of the bootstrap resamples.

6. An Example

In this section we apply the kernel estimators developed in earlier sections to a data set from the
aerial survey of southern bluefin tuna. The data set, which is shown in Figure 1, was collected in
January 1993 with sample size n = 119 and total search length L = 2782.83 miles. The sample
mean school size was 115.50 tonnes. Due to the large scale of the school size, a log transform was
used to rescale the size data in Figure 1.

We see a basically monotonic decrease in the probability of detection with respect to the distance
and a single mode of school size as shown by Figure 1(1) and Figure 1(2) respectively. Both figures
show a wide shoulder near z = 0 and a flat valley near s = 0. Figure 1(3) shows that no small
schools were detected when the distances were larger than 10 miles. This is a clear indication of the
size effect. It is worth mentioning that the survey may be subject to violation of the assumption
9(0,s) = 1. However, the histogram in Figure 1(1) shows that the violation would not be a severe
one.

(1) Histogram of the sighting distances (2) Histogram of logarithm of school size

] &
5 5o
g g
g =] g =]
s by = S
T o ﬁﬁmm_m o

[=] o

0 5 10 15 20 0 2 4 6 8
perpendicular sighting distance (mile) log(school size)
(3) Scatter plot of distance and size

2
& ©
g

perpendicular sighting distance (mile)

Figure 1. The aerial survey data set of southern bluefin tuna.
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There were 17 replicate transect lines. The number of sightings on each transect line enabled us
to estimate cv(n). We have cAv2(n) = 0.053, which is much larger than 1/119 = 0.0084 under the
Poisson model. Therefore, (5.2) is used to compute the variance of the kernel estimates for D;.

Using (4.1), we have the two bandwidths h; = 1.86 and hy = 21.64 for constructing the
fixed kernel estimate for $(0), and a bandwidth h = 1.59 to estimate f.(0) by reference to a
normal distribution. The above hi, ho, and h are also used to construct pilot estimates for the
two dimensional p.d.f. f and the one dimensional distance-only p.d.f. fi. The resulting fixed and
adaptive kernel estimates and 95% confidence intervals for D; and ps are displayed in Table 1.
We also include results from the F'S method and the parametric model (7.1) of Drummer and
McDonald (1987) for comparison.

The results show that the fixed kernel and the parametric methods gave similar point estimates
for Dy and ps. They were all smaller than the adaptive and FS estimates. The smaller estimates
given by the fixed kernel estimators may be due to their bias as revealed both by the analysis given
in Section 4 and the simulation results presented in Section 7. The FS estimates have larger CVs
and wider confidence intervals than the adaptive kernel method; for example, the FS estimate of
school size has an estimated CV of 46%, compared to 29% for the adaptive estimate.

7. Simulation Results

In this section we present some simulation results designed to investigate the performance of the
kernel estimators and confidence intervals proposed in the previous sections. We generated N = 300
random points within a L X 2w rectangular “survey region” with w = 10. We chose the transect
length L such that D; = 1.0. Each point simulates the position of a school. As the detected school
size has a usually skewed distribution on [0, 00), each school size was randomly generated from
the X% distribution. Thus, the mean school size ps = 5. To detect each simulated school we used

the following exponential power series detection function, proposed by Drummer and McDonald
(1987):

gle,s) = exp{—(ba/s) ). (7.1)

It is easy to see that (7.1) was set up by inserting the size covariate s into a distance-only parametric
detection function, where c is a parameter controlling the size effect and a is a shape parameter.
We fixed b = 0.5 and varied the shape and size parameters a = 1.5,2.0, and 2.5 and ¢ = 0.2 and 0.6.
The simulation results shown in this section were all based on 1000 simulations and 499 bootstrap
resamples.

Table 2 gives point estimates for Dy and s together with their standard errors and mean squared
errors (MSE) by using the fixed kernel, the adaptive kernel, and the FS methods. Tables 3 and
4 give coverages and lengths of the bootstrap confidence intervals for both kernel estimators for
D, and pus, respectively. Results for the bootstrap FS confidence intervals are also contained in
Table 3.

In summary, we observe that:

(1) the adaptive kernel method produced quite satisfactory point estimates for D1; it had much
smaller bias than the fixed kernel estimates, which may be due to the not very large sample sizes
used in the simulation, and the tail effect on the bias was still negligible;

Table 1
Estimates of tuna biomass density D1 and the mean school size ps, together with
their standard errors (Std. error) and 95% confidence intervals. The subscripts
f, a, FS, and p on an estimate are the fized kernel, adaptive kernel,
Fourier series, and Drummer and McDonald’s parametric estimates respectively.

Estimate Std. error 95% confidence interval
Dy 1772 80.9 ’ (15.3, 339.1)
D1, 225.0 85.3 (57.8, 392.1)
leg 247.0 97.3 (56.2, 437.8)
D1y 187.8 71.1 (48.4, 327.2)
fsp 71.9 27.5 (16.3, 124.2)
[isa 89.5 25.9 (38.7, 140.4)
;:LSFS 91.1 42.7 §7.41, 174.8;

fisp 75.6 18.0 40.3, 110.9
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Table 2
Point estimates, standard error (Std. error) and mean square error (MSE) for density
Dy and ps with exponential series detection function g(z,s) = exp{(bz/s)*}, b = 0.5,
and w = 10. The subscripts f, a, and FS denote the fixed kernel, the adaptive
kernel, and the FS estimates, respectively. The true density D1 = 1.0 and ps = 5.0.

a=1.5 a=20 a=25

c=02 c=0.6 c=0.2 c=0.6 c=02 c=10.6
ﬁlf 0.854 0.880 0.914 0.925 0.944 0.950
Std. error 0.172 0.127 0.176 0.128 0.175 0.128
MSE 0.051 0.031 0.038 0.022 0.034 0.019
Dia 0.941 0.964 0.987 0.999 1.001 1.014
Std. error 0.197 0.148 0.199 0.148 0.197 0.147
MSE 0.043 0.023 0.040 0.022 0.039 0.022
Dpg 0.945 0.949 1.003 0.988 1.029 1.010
Std. error 0.224 0.171 0.213 0.163 0.205 0.155
MSE 0.053 0.032 0.045 0.027 0.043 0.024
Qs 5.10 5.29 5.09 5.26 5.08 5.23
Std. error 0.502 0.395 0.502 0.391 0.498 0.384
MSE 0.262 0.240 0.260 0.220 0.254 0.200
fisa 4.95 5.09 4.98 5.10 5.01 5.05
Std. error 0.523 0.422 0.525 0.423 0.522 0.418
MSE 0.276 0.178 0.276 0.189 0.272 0.179
[sFs 4.96 5.05 4.99 5.07 5.02 5.06
Std. error 0.747 0.649 0.662 0.618 0.68 0.590
MSE 0.557 0.424 0.438 0.387 0.463 0.352
Ave. n 72.4 127.1 70.9 129.0 71.0 130.9

(2) the two kernel estimates had much lower MSE than the FS estimates; the MSE of the fixed
kernel estimates were less than those of the adaptive kernel estimates for ps when the school size
parameter ¢ was small (0.2), and for D1 when f had a larger shoulder (a = 2.5); the opposite was
observed for s when ¢ was large (0.6) and for D; when the shoulder was small (a = 1.5).

(3) the adaptive confidence intervals for both Dy and ps had better coverages and were shorter
than their fixed kernel and FS counterparts;

(4) the fixed kernel estimators gave estimates with smaller variance which explained the
observations that they had shorter confidence intervals and smaller MSE in some cases mentioned
in (2);

(5) improvements in the kernel estimates and confidence intervals for D are evident when the
shape parameter a increases, which increases the smoothness of f near z = 0; while for ps, the size
parameter ¢ plays a more important role than the shape parameter a.

Table 3
Coverages and lengths of the two kernel and FS confidence intervals
for density D based on a bootstrap variance estimation with 0.95% nominal
coverage. The average sample sizes used are those given in Table 2.

a=1.5 a=20 a=25
c=0.2 c=0.6 c=0.2 c=0.6 c=0.2 c=10.6
Fixed kernel 0.877 0.895 0.924 0.937 0.942 0.953
Length 0.771 0.594 0.798 0.603 0.805 0.604
Adap. kernel 0.914 0.931 0.942 0.965 0.956 0.960
Length 0.830 0.625 0.855 0.633 0.860 0.631
FS 0.900 0.910 0.931 0.987 0.985 0.987

Length 0.886 0.707 0.870 0.770 0.990 0.768
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Table 4
Coverages and lengths of the two kernel confidence intervals for the mean
school size s based on a bootstrap variance estimation with 0.95% nominal
coverage. The average sample sizes used are those given in Table 2.

a=1.5 a=2.0 a=25
c=0.2 c=10.6 c=10.2 c=10.6 c=0.2 c=10.6
Fixed kernel 0.928 0.932 0.927 0.933 0.931 0.936
Length 2.02 1.59 2.04 1.58 2.05 1.56
Kernel 0.942 0.942 0.947 0.939 0.951 0.948
Length 2.08 1.62 2.09 1.62 2.10 1.60

It is interesting to see that the bootstrap technique substantially improves the coverage of the
F'S confidence interval, compared with the nonbootstrap results reported in Quang (1991) and
reproduced by this author. This again confirms that the bootstrap offers more accuracy in the
variance estimation.

8. Discussion

We have seen that kernel smoothing is a useful nonparametric tool for analyzing line transect data
when both the sighting distance and school size are factors determining the detection of cluster
schools. The adaptive kernel method produces sensible estimates and confidence intervals for both
Dj and ps. The fixed kernel method gives estimates with smaller variance and shorter confidence
intervals for ps than those produced by its adaptive kernel counterpart. But, it also produces a
larger bias in both the point estimate and the confidence level. The adaptive estimator is subject
to the tail effect when the sample size is large. After balancing these findings, we would recommend
that the adaptive kernel method be used for inference on both. D and ps when the sample size is
not too large. However, when the sample size is large or the variation of the estimate is of concern,
the fixed kernel estimate should be used.

The kernel estimates generally require the p.d.f. f of the data to have a wide shoulder near x = 0
and a flat valley near s = 0. When f is not very smooth near x = 0, for example when ¢ = 1.5 in
the simulation presented in Section 7, the kernel methods produce biased estimates and confidence
intervals with coverage less than nominal, as does the F'S method. This is because when a highly
smoothed Gaussian kernel or cos( ) for the F'S method is used to model a p.d.f. that is not very
smooth near x = 0, some bias is inevitable. To remedy this, a less smoothed kernel may be used
instead. Further research is needed in this area.

To make the method developed in this paper of immediate use for practitioners, computer
software has been developed and can be obtained by contacting the author.
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RESUME

Quand on effectue un échantillonnage le long d’un transect pour estimer I’abondance d’une
population sauvage vivant en groupes, la détection d’un groupe dépend non seulement de la distance
perpandiculaire du groupe au transect, mais aussi de la taille du groupe. Les groupes de tailles les
plus importantes sont plus faciles a détecter que les plus petits. Alors on peut envisager une fonction
de détection & deux variables, la distance et la taille. Cet article utilise une méthode de lissage par
noyau pour ajuster les données bivariées du transect afin d’estimer & la fois I'abondance et la taille
moyenne des groupes. On étudie deux estimateurs par noyau: ’estimateur & noyau fixe, qui utilise
la méme largeur de fenétre pour tous les points; et I'estimateur & noyau adaptatif qui permet de
faire varier la largeur de la fenétre suivant les points.
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APPENDIX

1. Derivation of (4.2)

Let o2 = [ t>K(t)dt, R(K) = [ K(t)*>dt, and f11 and fas be the second partial derivatives of f
with respect to x and s, respectively. We first derive the mean of f (0, s) conditioning on the sample
size n. According to standard kernel theory, for example Scott (1992, p. 150),

BU0,5) [ m} = £(0,5) + 5 0% (A3 11(0,5) + W3 n(0,5)} + O(n ™27, (A1)

We assume: (1) all the conditions in the Fubini Theorem hold which allow changing the order of
integrations; (2) T; = [§° sfii(0,s)ds < oo for s = 1 and 2; (3) [§° sfi45;(0,5)ds are bounded
for the fourth-order partial derivatives f;;;;(0,s) where 4,7 =1 or 2. Then, a similar derivation to
Prakasa Rao (1983, p. 45) may show that

E{3;(0)|n} = /o sE{f(0,s) | n} ds
= B(0) + %Ui(hfﬂ + h3T) + O(n~ %),

With h; and ho given by (4.1) and defining ¢(p) = (1 — p?)% (1 + p2/2)71/3,
E(D1f) = E{nf3;(0)/2L}

= D1 + 7 okto) (03T1 + o2 T)B(? ) /L + O(B(/%)/L). (A2)

It may be shown that p = 1/{f(0)w} and E(n') — (Np)! = (2LD1p/us)' for | = 1/3 and 2/3,
respectively. Therefore,

E(Dys) = Dy +bL™ Y £ O(L72/3),

where b= 1/40% (02Ty + 02T3) (1 — p2)° (1 + p2/2)~ /3 [2D1 /{fo (O)wps}] /™.



1294 Biometrics, December 1996

2. Derivation of (4.5)

The derivation of (4.5) follows the route shown in Appendix 1. It may be shown that the adaptive
kernel estimator (0, s) for f(0, s) has a bias which is a smaller order than h? and h3, by extending
Theorems 2.1 and 2.2 of Hall et al. (1995) to multivariate situations. In particular, if f has roughly
an exponential tail, which is a typical form for f from a line transect survey,

2 2
2 h h
E{f(0,5) [n} = f(0,5) + O ({log(;”)} + {bg(ig)} ) + O(hY + h).
Since h; = O(?fl/ﬁ) according to (4.2), we have

E{f(0,5)|n} = £(0,5) + o(n /%)

Then, by following the same derivation of (A.2), we have

E(D1a) = Dy +o(L™Y/3).

3. Asymptotic Normality of D,
Remember Dy, = (2L) " 'nBa(0) and B4(0) = n~! 7, W;, where

Wi = 4A; ' hi P {ai/(Niha) | si[@{s:/(Nih2)} — 1/2] + Nhao{si/(Aih2)}]. (A.3)

We treat G in A; = {f(s, s;)/G}~'/? as a constant since it is just a scaling factor. From the theory
of kernel estimation, under the condition that f has bounded second derivatives,

Ai = Xio + Op(n75/12) uniformly for i = 1,...,n, (A.4)

where \;p = {f(xi,si)/G}_lm. Define h;g for i = 1 and 2 by replacing the sample estimates of
oz, 0s, and p with their true values in h;. Then, it can be shown that, for ¢ = 1 and 2,

hi = hip + Op(n~"/12), (A.5)

provided the sample estimates are /n consistent. Substituting (A.4) and (A.5) into (A.3), and
noting that ® and ¢ have bounded derivatives, we have

W; = Wio + Op(11_5/12) uniformly for i =1,...,n, (A.6)

where
Wio = 4A; hig ¢{xi/(Niohio)} I:Si [®{s:/(Nioh20)} — 1/2] + Niohad{si/(Nioh20)} |-

The uniformity in (A.6) ensures that n=! S (W; — Wy) = 0, (n~5/12). Since n — oo when
L — oo, we have
n
nt Z (W; — Wi0) — 0 in probability as L — oo. (A7)
i=1

We assume there is a sequence of positive constants {as} tending to co as L — oo such that
n/ay, — c in probability for some positive constant c. If n is Poisson or binomially distributed,
then condition (1) holds. For instance if n is binomial, then a; = 2W DgpL and ¢ = 1.

As {W;0}-, are independent and identically distributed random variables and as n satisfies
the above condition, we have ©7' ; W;o/y/n is asymptotically normally distributed by using the
central limit theorem on a random number of summands as given in Serfling (1980, p. 32). As
vn/2L — \/E(n)/2L in probability, the Slutsky theorem gives the asymptotic normality for
(2L)"'n~1 £ W;p. Thus, the asymptotic normality for D1, = (2L)"*n™t I, W; is obtained
from (A.7), again using the Slutsky theorem. The last part of the proof is similar to that of Lemma
3 of Quang (1993) for a point transect estimator.



