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Abstract

Kernel estimators using non-negative kernels are considered to estimate probability density functions
with compact supports. The kernels are chosen from a family of beta densities. The beta kernel es-
timators are free of boundary bias, non-negative and achieve the optimal rate of convergence for the
mean integrated squared error. The proposed beta kernel estimators have two features. One is that the
di�erent amount of smoothing is allocated by naturally varying kernel shape without explicitly chang-
ing the value of the smoothing bandwidth. Another feature is that the support of the beta kernels can
match the support of the density function; this leads to larger e�ective sample sizes used in the density
estimation and can produce density estimates that have smaller �nite-sample variance than some other
estimators. c© 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Let X1; : : : ; Xn be a random sample from a distribution with an unknown probability
density function f. A standard kernel density estimator for f is

f̂(x) = (nh)−1
∑
K{h−1(x − Xi)}; (1.1)

where K and h are the kernel function and the smoothing bandwidth, respectively.
Comprehensive reviews of the kernel smoothing method are available in Silverman
(1986), Scott (1992) and Wand and Jones (1995). The standard kernel estimator
(1.1) was developed primarily for densities with unbounded supports. The kernel
function K is usually symmetric and is regarded as less important than the smoothing
bandwidth. While using a symmetric kernel is appropriate for �tting densities with
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unbounded supports, it is not adequate for densities with compact supports as it
causes boundary bias.
Removing boundary bias has been an active area of research. Data reection was

proposed by Schuster (1985), but is only e�ective when the density functions have
a zero derivative at boundary points. Boundary kernels were suggested by M�uller
(1991). Cowling and Hall (1996) proposed generating pseudodata beyond the bound-
ary points by linear interpolation of the order statistics. Marron and Ruppert (1994)
considered using empirical transformations. In recent years, the local polynomial
regression method of Cleveland (1979) has been applied to density estimation by
Lejeune and Sarda (1992) and Jones (1993). Another version of the local linear
estimator was considered by Cheng et al. (1996) by data binning and a local poly-
nomial �tting on the bin counts. As the local linear estimators can have negative
values (so too the boundary kernel estimators), Jones and Foster (1996) proposed a
non-negative estimator by combining a local linear estimator and a re-normalizing
kernel estimator.
In the simple spirit of the standard kernel estimator (1.1), this paper considers

estimators using a beta family of density functions as kernels to estimate density
functions with compact supports. The idea of smoothing using the beta kernels has
been discussed in Chen (1999) in the context of non-parametric regression. This
paper concentrates on density estimation and �nite-sample comparisons with the local
linear estimator of Lejeune and Sarda (1992) and Jones (1993) and its non-negative
modi�cation proposed by Jones and Foster (1996). The beta kernel method is easy
both in concept and in its implementation, and produces estimators which are free of
boundary bias, always non-negative and which have mean integrated squared errors
of O(n−4=5). There are two special features about the beta kernels. One is that the
shape of the beta kernels varies naturally, which leads to the amount of smoothing
being changed according to the position where the density estimation is made without
explicitly changing the bandwidth; this implies that the beta kernel estimators are
adaptive density estimators. The other feature is that the support of the beta kernels
matches the support of the density function; this leads to larger e�ective sample size
used in the density estimation and can produce density estimates that have smaller
variance.
The paper is structured as follows. In Section 2 beta kernel estimators are intro-

duced. Their bias and variance properties are studied in Section 3. In Section 4, the
mean integrated squared errors and the optimal smoothing bandwidths are derived.
Section 5 compares the variance of the beta kernel estimators with that of a local
linear estimator. The beta kernel estimators are used in Section 6 to analyze a tuna
data set as an example. Section 7 presents results from a simulation study.

2. Beta kernel estimators

The idea of beta kernel smoothing was motivated by the Bernstein theorem in
mathematical function analysis, as explained in Brown and Chen (1999) when con-
sidering estimation of regression curves with equally spaced �xed design points by
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combining the beta kernels and Bernstein polynomials. The Bernstein theorem states
that for any function which is continuous and has a bounded support its Bernstein
polynomials converge to the function uniformly. The uniform convergence means the
Bernstein polynomials are free of boundary bias. The Bernstein polynomials use a
special type of beta kernels: the binomial kernels which contribute to a shortcoming
of undersmoothing, as a smoothing bandwidth of n−1=2 is implicitly used. However,
the unique feature exhibited in the binomial kernels is valuable and motivating. Chen
(1999) uses only the beta kernels without the Bernstein polynomials to smooth re-
gression curves with arbitrary design points. We consider the use of beta kernel for
probability density estimation in this paper and compare with the two local linear
density estimators. A referee has pointed out that the idea of beta kernel smoothing
was considered before by Stine and Bloom�eld (1978) in an unpublished research
report. The author has since located another paper by Harrell and Davis (1982) in
using the beta kernels for quantile smoothing. However, these schemes of using beta
kernels had a problem of being lack of an explicit smoothing parameter, and was
not promising for general use in curve estimation.
Let X1; : : : ; Xn be a random sample from a distribution with an unknown probability

density function f which has a compact support. We assume that the compact support
is known and, without loss of generality, is [0; 1] and f has continuous second
derivative. Let Kp;q be the density function of a Beta(p, q) random variable.
We consider two beta kernel estimators for f. The �rst-beta kernel estimator uses

Kx=b+1; (1−x)=b+1 as the kernel at x∈ [0; 1], where b is a smoothing parameter satisfying
the condition that b→ 0 as n→ ∞, and is de�ned as, for x ∈ [0; 1],

f̂ 1(x) = n
−1

n∑
i=1

Kx=b+1;(1−x)=b+1(Xi):

It is similar to the standard kernel estimator (1.1), only replaces a �xed kernel with
the beta kernels.
In order to reduce the bias of f̂ 1 as outlined in Section 4, another beta kernel

estimator is

f̂ 2(x) = n
−1

n∑
I=1

K?x;b(Xi);

where K?x;b are boundary beta kernels de�ned as

K?x;b (t) =



Kx=b; (1−x)=b (t) if x ∈ [2b; 1− 2b];
K�(x); (1−x)=b (t) if x ∈ [0; 2b);
Kx=b;� (1−x)(t) if x ∈ (1− 2b; 1];

where �(x; b)=2b2 +2:5−√4b4 + 6b2 + 2:25− x2 − x=b. Note that for each �xed b
�(x; b) is a monotonic increasing function of x between [0; 2b]. In particular, it has
y = x=b as its tangent line at x = 2b and �(0; b) = 1.
An eminent feature of the beta kernels is that the kernel shape changes according

to the value of x, as shown by a set of beta kernels displayed in Fig. 1 (all the �gures
in the paper are produced using S-plus). This varying kernel shape in fact changes
the amount of smoothing applied by the beta kernel estimators. To appreciate this
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Fig. 1. Beta kernels Kx=b+1;(1−x)=b+1(t) for b= 0:2.

point, we notice that the variance of a Beta{x=b+1, (1− x)=b+1} random variable
is

(b−1x + 1){b−1(1− x) + 1}(b−1 + 2)−2(b−1 + 3)−1 = b x(1− x) + O(b2):
This beta kernel adaptive scheme is in contrast with the existing adaptive scheme
where a di�erent amount of smoothing is achieved by changing the value of smooth-
ing bandwidth. Also the beta kernels are non-negative which implies that the beta
kernel estimators are non-negative as well.

3. Bias and variance

Note that

E{f̂1(x)}=
∫ 1

0
Kx=b+1;(1−x)=b+1(y)f(y) dy = E{f(�x)};

where �x is a Beta{x=b+1; (1−x)=b+1} random variable. Using the same derivation
for the bias of the beta kernel regression estimator given in Chen (1999), it can be
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shown that the bias of the beta estimator is

Bias{f̂ 1(x)}= {(1− 2x)f′(x) + 1
2x(1− x)f′′(x)}b+ o(b); (3.1)

where the remainder term is uniformly o(b) for x ∈ [0; 1]. The bias is of O(b)
throughout [0; 1], indicating that f̂ 1 is free of boundary bias.
The involvement of f′ in the bias is due to the fact that x is not the mean of

the Beta{x=b + 1; (1 − x)=b + 1} distribution; rather, it is the mode. The use of the
boundary beta kernels K?x;b largely eliminates the involvement of f

′ in the bias of
f̂2. Indeed using the same method that derives (3.1), it may be shown that

Bias{f̂ 2(x)}=



1
2x(1− x)f′′(x)b+O(b2) if x ∈ [b; 1− 2b];
�(x)bf′(x) + o(b) if x ∈ [0; 2b);
−�(1− x)bf′(x) + o(b) if x ∈ (1− 2b; 1];

where �(x) = (1 − x){�(x) − x=b}={1 + b�(x) − x}. Now f′ is removed from the
bias in the interior, and is only present in small areas near the boundaries but is
compensated for by the disappearance of f′′. The integrated squared bias is

IB2{f̂ 2(x)}=
∫ 1

0
Bias2{f̂ 2(x)} dx = 1

4b
2
∫ 1

0
{x(1− x)f′′(x)}2 dx + o(b2) (3.2)

which does not involve f′.
The variance of f̂1 is

Var{f̂ 1(x)}= n−1Var{Kx=b+1;(1−x)=b+1(Xi)}
= n−1

[
E{Kx=b+1;(1−x)=b+1(Xi)}2 − [E{f̂ b(x)}]2

]
:

It is easy to show that

E{Kx=b+1;(1−x)=b+1(Xi)}2 = Ab(x)E{f(x)}; (3.3)

where x is a Beta{2x=b+ 1; 2(1− x)=b+ 1} random variable and

Ab(x) =
B{2x=b+ 1; 2(1− x)=b+ 1}
B2{x=b+ 1; (1− x)=b+ 1} : (3.4)

We need the following lemma whose proof is given in Chen (1999) to determine
the order of magnitude of Ab(x).

Lemma. For b small enough,

Ab(x) ≤ 1
2
√
�{x(1− x)}

−1=2b (b−1 + 1)3=2 for any x ∈ [0; 1]

and also

Ab(x) ∼



1
2
√
� {x(1− x)}−1=2b−1=2 if x=b and (1− x)=b→ ∞;
�(2�+1)

21+2��2(�+1)b
−1 if x=b→ � or (1− x)=b→ �
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for a positive constant �. As a result of the lemma and (3.3),

Var{f̂1(x)}=




1
2
√
�

n−1b−1=2

{x(1−x)}1=2 {f(x) + O(n−1)} if x=b and
(1− x)=b→ ∞;

�(2�+1)
21+2��2(�+1)n

−1b−1{f(x) + O(n−1)} if x=b→ � or
(1− x)=b→ �:

(3.5)

The variance of f̂2 is similar. The only di�erence is that the multiplier in front of
n−1b−1 in the case of x=b or (1− x)=b→ � has a slightly di�erent form.
While the beta estimators are both free of boundary bias, their asymptotic variances

are of a larger order (n−1b−1) near the boundaries than those (n−1b−1=2) in the
interior. However, as will be seen in the next two sections that (i) the impact of
the increased variance near the boundary on the mean integrated squared error is
negligible; and (ii) the two beta kernel estimator tend to have smaller �nite-sample
variance than the two local linear estimators due to the fact that the support of the
beta kernel matches that of the density f. Therefore, the result in (3.5) is asymptotic
indeed.

4. Global properties

Let �= b1−� where 0¡�¡ 1. From (3.5), for i = 1 or 2,

∫ 1

0
Var{f̂i(x)} dx=

∫ �

0
+
∫ 1−�

�
+
∫ 1

1−�
Var{f̂1(x)} dx

=
∫ 1−�

�

1
2
√
�
{x(1− x)}−1=2n−1b−1=2f(x) dx +O(n−1b−�)

=
1
2
√
�n

−1b−1=2
∫ 1

0
{x(1− x)}−1=2f(x) dx + o(n−1b−1=2)

(4.1)

by choosing � properly.
Combining (3.1), (3.2) and (4.1), the mean integrated squared errors for f̂1 and

f̂2 are, respectively,

MISE(f̂ 1) = b
2
∫ 1

0
{(1− 2x)f′(x) + 1

2x(1− x)f′′(x)}2 dx

+
1
2
√
�n

−1b−1=2
∫ 1

0
{x(1− x)}−1=2f(x) dx + o(n−1b−1=2 + b2)

(4.2)
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and

MISE(f̂2) =
1
4b
2
∫ 1

0
{x(1− x)f′′(x)}2 dx

+
1
2
√
�n

−1b−1=2
∫ 1

0
{x(1− x)}−1=2f(x) dx + o(n−1b−1=2 + b2):

(4.3)

The optimal bandwidths which minimize the dominant order terms in (4.2) and
(4.3) are

b?1 =
[ 1
2
√
�
∫ 1
0 {x(1− x)}−1=2f(x) dx]2=5

42=5
[∫ 1
0 {(1− 2x)f′(x) + 1

2x(1− x)f′′(x)}2 dx
]2=5 n−2=5

and

b?2 =

[
1
2
√
�
∫ 1
0 {x(1− x)}−1=2f(x) dx

]2=5
[∫ 1
0 {x(1− x)f′′(x)}2 dx

]2=5 n−2=5:

So, the optimal bandwidths are O(n−2=5) as compared with h=O(n−1=5) for the other
kernel estimators. Substituting the above optimal bandwidths, we have the optimal
mean integrated squared errors

MISE?(f̂1) =
5
44=5

[
1
2
√
�

∫ 1

0

f(x)
{x(1− x)}1=2 dx

]4=5

×
[∫ 1

0

{
(1− 2x)f′(x) + 1

2x(1− x)f′′(x)
}2
dx

]1=5
n−4=5

and

MISE?(f̂2) =
5
43=5

[
1
2
√
�

∫ 1

0
{x(1− x)}−1=2f(x) dx

]4=5
[∫ 1

0
{x(1− x)f′′(x)}2 dx

]1=5
n−4=5:

Thus, both f̂1 and f̂2 achieve the optimal rate of convergence for the mean integrated
squared errors.
It may be shown that for any density function f, if both

∫ 1
0 {f′(x)}2 dx and∫ 1

0 {f′′(x)}2 dx are �nite, then∫ 1

0

{
(1− 2x)f′(x) +

1
2
x(1− x)f′′(x)

}2
dx ≥

∫ 1

0

{
1
2
x(1− x)f′′(x)

}2
dx:

This means that MISE?(f̂1) ≥ MISE?(f̂2) and b
?
1 ≥ b?2 . Therefore, f̂2 should have

a better global performance and use a smaller bandwidth than f̂1, and is thus rec-
ommended.
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5. Variance comparison

Even though the variance behaviour of the beta kernel estimators near the bound-
aries has little e�ect on the mean integrated squared error, one may still be concerned
about it. To allay this concern, in this section we compare the variance of the beta
kernel estimators with that of the local linear estimator of Lejeune and Sarda (1992)
and Jones (1993) and the non-negative estimator of Jones and Foster (1996).
For non-negative integers s and m and any symmetric kernel K with compact

support [− 1; 1], let de�ne

asm(x; h) =




∫ x=h

−1
tsKm(t) dt if x ∈ [0; 1− h];

∫ 1

−(1−x)=h
tsKm(t) dt if x ∈ (1− h; 1]:

The local linear estimator of Lejeune and Sarda (1992) and Jones (1993) is

f̂l(x) = (nh)
−1

n∑
1

Kl

(
x; h;

x − X 1i
h

)
;

where

Kl(x; h; t) =
a21(x; h)− a11(x; h)t

a01(x; h)a21(x; h)− a211(x; h)
K(t)

is the local linear kernel used at x. Clearly, Kl(x; h; t) = K(t) if x¿h implying that
the original kernel K is used in the interior (h ≤ x ≤ 1− h). In the boundary areas
(x¡h or x¿ 1− h), Kl(t) is a linear combination of K(t) and tK(t).
The above estimator can take negative values. To ensure non-negativity, Jones and

Foster (1996) proposes a modi�cation to f̂l, denoted as f̂nl,

f̂nl(x) = �f(x) exp{f̂ l(x)= �f(x)− 1};
where �f(x) = f̂(x)=a01(x; h) is the re-normalization of the standard kernel estimator
(1.1) and is non-negative itself.
The bias and variance of f̂l(x) and f̂nl(x) have been given in Jones (1993) and

Jones and Foster (1996). De�ne

V (x; h) =
a221(x; h)a02(x; h)− 2a21(x; h)a11(x; h)a12(x; h) + a211(x; h)a22(x; h)

a21(x; h)a01(x; h)− a211(x; h)
:

(5.1)

Note that for p ≥ 1 V (x; h) = R(K) =
∫ 1
−1 K

2(t) dt. Then, for f̂E being either f̂l or
f̂nl,

Var{f̂ E(x)}= (nh)−1V (x; h)f(x) + o{(nh)−1}: (5.2)

As the two beta kernel estimators and the two local linear estimators basically
have the same variance, respectively, a comparison is made only between f̂1 and
f̂l regarding the variance coe�cient function. The variance coe�cient function is
the multiplier of (nh)−1f(x) or (nb1=2)−1f(x) in the expansion for the variance. To
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Fig. 2. Variance coe�cient functions of the beta and the local linear estimators.

make the amount of smoothing used by the two smoothers in the same scale, we let
h=

√
b based on the facts that the optimal order for global h and b are of n−1=5 and

n−2=5, respectively. The variance coe�cient function for f̂1 is just
√
bAb(x), and that

for the local linear smoother is V (x; h) given in (5.1).
In Fig. 2 we plot the two variance coe�cient functions for four levels of band-

widths. We see that the two coe�cient functions are almost identical in the interior
of [0; 1], and only di�er in the boundaries. When the bandwidth is at a larger level
in plots (1)–(3), the beta estimator has in fact a smaller variance coe�cients near
the boundaries. It is only when b is less than 0.00613 that the beta estimator will
have a larger variance coe�cient near the boundaries. Generally speaking, 0.00613
is a very small bandwidth value and requires a very large sample size to reach it.
The exact sample size corresponding to the bandwidth value depends on the under-
lying density f. According to a formula for the optimal bandwidth given in the next
section, if f(x) is the density function of a truncated N(0; 0:52) distribution in [0; 1],
whose de�nition is given in Section 7, the sample size required to reach b=0:00613
is about 90000 for f̂1. If f(x) = �

−1exp(−x=�)={1:0 − exp(−1:0=�)}, which is the
density of the truncated exp(�) distribution in [0; 1], the sample size is around 37 000
for � = 0:5. Therefore, generally speaking the boundary variance behaviour should
not be a concern when the sample size is not very large.
It may be argued that Fig. 2 presents a theoretical picture only. To shed more light

on the issue, in Fig. 3 we present simulated variance of the density estimates at x=0
using the two beta kernel, the local linear and Jones and Foster’s non-negative esti-
mators. The simulation results are part of a comprehensive simulation study whose
details are described in Section 7. The compact Biweight kernel is used by the two
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Fig. 3. Variance of four density estimates at x = 0.

non-beta kernel estimators. The sample size ranges from 20 to 300, and the under-
lying densities are, respectively, those of the truncated N(0; 0:52) and the truncated
exp(0:5) distributions. We observe that the modi�ed beta kernel estimator f̂2 had the
smallest variance among the estimators for all the cases considered. The �rst-beta
kernel estimator had larger variance than the other two non-beta kernel estimators
only in the case of exponential distribution when the sample size was large. It is in-
teresting to note that the non-negative estimators of Jones and Foster had the largest
variance for almost all the cases considered.
The smaller variance we just observed for the beta kernel estimators is probably

due to the fact that the support of the beta kernels matches the support of the density.
Thus, at any �xed x each data value contributes to the density estimate. This is in
contrast to the local linear estimator with a compact kernel, where only data within
a small area near x are utilised. So, the beta kernel estimators should have larger
e�ective sample sizes than the local linear estimator and thus can reduce the variance.
The smaller e�ective sample size employed by a local linear regression estima-

tor was revealed in the context of non-parametric regression by Seifert and Gasser
(1996), though the concept of e�ective sample size was not mentioned. They noticed
that a local linear regression estimator using a compact kernel had erratic behaviour,
and that using the Gaussian kernel can stabilize the variance. Indeed, using the
Gaussian kernel increases the e�ective sample size as it has support in (−∞;∞).
However, it is not quite appropriate to use a kernel with unbounded support to esti-
mate densities with compact supports, as the entire density domain will be covered
by boundary areas.



S.X. Chen / Computational Statistics & Data Analysis 31 (1999) 131–145 141

6. An example

We �rst apply the proposed beta kernel smoothers to a tuna data set, given in
Chen (1996), which were collected from an aerial line transect survey to estimate the
abundance of Southern Blue�n Tuna over the Great Australian Bight. The data are the
perpendicular sighting distances (in miles) of detected tuna schools to the transect
lines own by a light airplane with tuna spotters on board. The tuna abundance
estimation relies on the estimation of f, the probability density function of the
perpendicular sighting distances. As only absolute distances are recorded, the sighting
distances are con�ned in [0; w] where w is the maximum sighting distance and is 20
miles. The closer a tuna school is to the transect line, the larger the probability of
being detected. Therefore, there are relatively more Xi near 0. This means that the
density f should be a non-increasing function and has a compact support [0; 20].
For comparison, we also applied the local linear estimator of Jones (1993) using

the Biweight kernel. We did not include the non-negative estimator of Jones and
Foster (1996) as the local linear estimator respected non-negativity for this particular
data set. So far, the beta kernel smoothers have been proposed for a density with
[0; 1] as its support. An extension to any support is easy. For example, for the tuna
data

f̂2(x) = (nw)
−1∑K?x=w;b(Xi=w):

The cross validation method was used to choose the smoothing bandwidths by the
three kernel smoothers, and prescribed b1=0:095 for f̂1; b2=0:097 for f̂2; h=0:884
for the local linear estimator. As the cross validation method may sometimes not
give good bandwidth prescription, other bandwidth values were also tested by visual
inspections. It was found that the bandwidths given by the cross validation for the
two beta estimators were quite adequate. But the one for the local linear estimator
was too large, and h = 0:6 was used instead. The corresponding density estimates
using the bandwidth are plotted in Fig. 4.
As the real underlying density function is unknown, it is hard to judge among

the three density estimates. However, for line transect survey data a widely believed
feature among practitioners for the density function is that the density should have
a “shoulder” near x = 0 as the detection of animal schools near the transect line
remains high in an area near the transect line. We �nd the two beta kernel estimates
have, basically, “shoulders” near x= 0, and are quite close to each other near x= 0
and in the tails. The local linear estimate does not have a “shoulder” near x = 0.
This lack of “shoulder” was also observed for other values of bandwidth tried.

7. Simulation results

In this section we report results of a simulation study designed to investigate per-
formance of the proposed beta kernel estimators f̂1 and f̂2. For comparison purposes,
the local linear estimator of Jones (1993) and the non-negative estimator of Jones
and Foster (1996) were also evaluated. It should be pointed out that a comparison
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Fig. 4. Estimated density curves of the beta, the boundary kernel and the local linear kernel density
estimates for a tuna data set.

or competition among various estimators is, at times, hardly fair. For instance, in
the current comparison, the non-negative estimator is constructed using two density
estimators, and the local linear estimator is free to take negative values.
Two density functions which have compact support [0; 1] were considered. One is

f(x) =
2

�
√
2�
exp{−x2=(2�2)}{2�(1=�)− 1}−1

which is the density of |Yi| where Yi are the truncated N(0; �2) random variables in
[− 1; 1]. Here � is the the standard normal distribution function. Another is

f(x) = �−1exp(−x=�){1:0− exp(−1=�)}−1

which is the density of the truncated exponential distribution exp(�) random variable
in [0; 1].
Random samples were generated from the two distributions. The simulation pro-

gram is written in C. We chose �=0:25 and 0.5 for the truncated normal distribution
and �=0:25 and 0.5 for the truncated exponential distribution. The sample sizes used
in the simulation ranged from 20 to 320. For each sample size, 1000 random samples
were generated by modifying routines in Press et al. (1992). For each simulated sam-
ple and each estimator, the smoothing bandwidth was chosen by directly minimizing
the integrated squared error (ISE). For the two beta kernel estimators,

ISE(b) =
∫ 1

0
{f̂i(x)− f(x)}2 dx

for i=1 and 2, respectively, and similar expressions are available for the two non-beta
kernel estimators. The minimization of the integrated squared error with respect to
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Fig. 5. Bias, variance and the MISE for the truncated normal N(0; �2) density: � = 0:5 for (a) and
(b); � = 0:25 for (c) and (d).

the smoothing bandwidth was carried out by the golden search algorithm given in
Press et al. (1992).
By substituting the optimal bandwidths, the average integrated squared bias, the

integrated variance and the integrated squared errors were calculated as measures of
performance for each of the estimators. The results are summarized in Figs. 5 and
6. As expected from the result given at the end of Section 5, the simulation showed
that the �rst-beta kernel estimator f̂1 always had a slightly larger bias and variance
than f̂2. To minimize overcrowding, we do not include the simulation results of f̂1
in the �gures.
The bias, the variance and the integrated squared error were all getting smaller

when the sample size increased. And all three measures seemed to converge as n
increased. We observe in panels (a) and (c) of Figs. 5 and 6 that the beta kernel
estimator f̂2 had the smallest integrated variance for almost all the cases considered,
except for the truncated exponential distribution with �=0:25 in (c) of Fig. 6 where
the variance of f̂2 is only marginally larger than that of the local linear estimator.
The non-negative estimator of Jones and Foster had the largest integrated variance
for all the cases considered. The above results re-enforce the results given in Fig.
3 and the view that the beta estimators use larger e�ective sample sizes in their
density estimation. Indeed, the larger sample size used by the beta kernel estimator
contributed to a larger integrated bias as shown in the panels (a) and (c) of both
�gures.
Combining the bias and variance given in panels (a) and (c), we obtained the

average minimized integrated errors shown in panels (b) and (d). Fig. 5 shows
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Fig. 6. Bias, variance and the MISE for the truncated normal exp(�) density: �=0:5 for (a) and (b);
� = 0:25 for (c) and (d).

that the beta kernel estimator had the smallest averaged integrated squared error for
the truncated normal density which is sparse near x = 1. The local linear smoother
performed better in Fig. 6 as the sparseness of the density was improved in the
exponential density. Even in this case, the beta kernel estimator performed better
when the sample size was small as observed in (b) of Fig. 6. The Jones–Foster
estimator had the largest integrated error when n was less than 130 for both densities,
and had almost the same integrated squared errors with the beta kernel estimator
when n was large in Fig. 6.
In summary, the beta kernel estimator f̂2 is a serious competitor with the exist-

ing density estimators, and tends to produce density estimates which have smaller
variance due to its larger e�ective sample sizes.
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