
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 72, 2024 1

Ensembled Seizure Detection Based on
Small Training Samples

Pei Feng Tong , Hao Xiang Zhan , and Song Xi Chen

Abstract—This paper proposes an interpretable ensembled
seizure detection procedure using electroencephalography (EEG)
data, which integrates data driven features and clinical knowl-
edge while being robust against artifacts interference. The
procedure is built on the spatially constrained independent
component analysis supplemented by a knowledge enhanced
sparse representation of seizure waveforms to extract seizure
intensity and waveform features. Additionally, a multiple change
point detection algorithm is implemented to overcome EEG
signal’s non-stationarity and to facilitate temporal feature ag-
gregation. The selected features are then fed into a random
forest classifier for ensembled seizure detection. Compared with
existing methods, the proposed procedure has the ability to
identify seizure onset periods using only a small proportion of
training samples. Empirical evaluations on publicly available
datasets demonstrated satisfactory and robust performance of
the proposed procedure.

Index Terms—Change point detection, few-shot learning,
expert system, independent component analysis.

I. INTRODUCTION

EPILEPSY is a chronic neurological disease marked by
recurrent seizures which are abnormal brain activities as-

sociated with idiosyncratic symptoms [1], [2]. According to the
World Health Organization, approximately 50 million people
world-wide suffered from epilepsy [3], with 80% of them living
in low and middle-income countries. Scalp Electroencephalog-
raphy (EEG) is a common method used by neurologists for
understanding the seizure types and locating the seizure source
regions. Since long-term EEG monitoring requires much effort
of neurologists, it would be quite helpful to detect seizure
automatically via a trained algorithm to relieve doctors from the
routine works of inspecting EEG data for diagnostic decision.
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There have been studies on automated epileptic seizure detec-
tion as reviewed in Baumgartner and Koren [4] and Boonyaki-
tanont et al. [5]. Most of the studies employed feature-based
detection algorithms which first extracted features from seg-
mented EEG fragments and then train classifiers to determine
which fragments belong to the seizure periods [6], [7]. Bhat-
tacharyya and Pachori [8] proposed a wavelet transform based
algorithm for feature extraction with six classifiers to decide the
seizure and seizure-free EEG segments. Li et al. [9] developed
a multi-scale radial basis function network to deal with the
high temporal resolution images and used the support vector
machine (SVM) classifier for seizure detection. Wang et al.
[10] applied a topological data analysis framework for obtaining
epileptic EEG signals. Schröder and Ombao [11] proposed an
algorithm which evaluated the seizure evolution over space and
time and detected changes in the cross-coherence structure at
some specific frequencies before a seizure onset. Sharma and
Pachori [12] proposed a time-frequency representation based
on eigenvalue decomposition of Hankel matrix and Hilbert
transform and least-square SVM. Gupta and Pachori [13]
performed Fourier–Bessel series expansion with EEG signals
and calculated weighted multiscale Renyi permutation entropy
as feature.

The field of automatic seizure detection has a history over 40
years with the goal of developing accurate patient independent
seizure detection [14]. However, the performance of the auto-
matic detection still have much room to improve as indicated in
recent reviews [15], [16], [17]. A recent review [18] highlights
the need to enhance algorithm robustness through the few-shot
learning technique, which is a focus of our study.

Nevertheless, there are four major challenges for a more
robust and practical seizure detection algorithm. The first chal-
lenge comes from the fact that most works employing the in-
dependent component analysis (ICA) [19] and related spatially
constrained ICA (SCICA) [20] for artifacts removal rather than
seizure signal acquisition [21], [22], [23], [24]. ICA and SCICA
decompose EEG series to independent components (ICs) and
then remove the artifact related ICs via inverse ICA transfor-
mation. The ICs identified from the training data may not have
good adaptation to the testing data as artifacts may not be stably
situated across time and subject domains.

The second challenge is a lack of sparse and informative
time-frequency feature representation for seizure signals from
EEG records. Many existing time-frequency based feature ex-
traction methods employ complete sets of basis functions, such
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as wavelet bases [7], [8], [13], [25], [26]. Using the complete
bases tends to produce dense representations of seizure signals,
which are usually accompanied by higher variance and re-
duced signal-to-noise ratio. This is quite contrary to the clinical
practice of neurologists, who seek sparse representations by
focusing on specific seizure related waveforms [27].

The third challenge comes from that the seizure detection al-
gorithms are often trained on fixed length segments whose start
and ending may not match those of the seizure or non-seizure
periods, and inevitably generates mixed-statue segments. The
mixed statue segments can cause a lower signal-to-noise ratio
and lead to biased estimates to the seizure onset times. At the
same time, simply remove these segments during training may
cause an overestimation of accuracy rates.

The last challenge arises from the need to develop pa-
tient specific seizure detection method with small training
samples in order to make the detection algorithm worth-
while from clinicians’ perspective. Many existing algorithms
are trained via the 5-10 folds cross validation, which means
using 80% - 90% samples for training and potentially sav-
ing only 10%-20% of doctors’ time. Training based on small
samples (few-shot learning) is more desirable as promoted
by the few-shot learning [28], and was emphasized in [18].
One way to realize effective small sample training is to uti-
lize clinical knowledge in the algorithm [29], which is the
approach we take.

Our proposals designed to overcome these challenges are
made in four aspects. Firstly, the correlations between ICs and
labeled data are used to select informative ICs. This offers a
systematic IC selection that guides the transfer of learned ICs
from training to testing data, and determines seizure related ICs
for signal enhancement and artifacts removal. This is different
from the existing methods whose use of the ICs were largely
concerned with artifact removal. We select the seizure-related
ICs by (i) calculating the correlation between the ICs and EEG
signals during seizure onset periods, and (ii) formulating an
energy ratio statistic between seizure onset and offset periods.
The most relevant ICs are those who have high correlations and
high energy ratios simultaneously.

The second aspect is in using clinically interpretable wave-
forms, trying to mimic the practice of neurologists when they
examine EEG series. This knowledge based waveform learn-
ing generates sparse signal representation due to the use of
a clinical knowledge-based waveform dictionary. This is dif-
ferent from the existing orthogonal matching pursuit (OMP)
or wavelet based approaches, which largely rely on complete
basis functions and hence generate denser and noisier signal
representations as mentioned above.

The third aspect is in implementing a statistical change-
point detection procedure to segment the denoised time series
to stationary pieces after the ICs selection. This offers more
flexibility than the existing fixed length segmentation used in
training the classifiers. The flexible segment length allows sig-
nal enrichment and stronger contrast between seizure and non-
seizure periods, leading to better signal discovery, and would
be theoretically and practically useful for the signal process-
ing community.

The last challenge to facilitate seizure detection with small
training can be overcome by integrating the three proposals
mentioned above. Without requiring more labeling efforts in
the current clinical workflow, the proposed method is designed
to use about one hour EEG records verified by neurologists
as training samples, corresponding to a training rate of 5%
in the CHB-MIT dataset [30], [31] and 25% in the Helsinki
University Hospital (HUH) dataset [32] and the Temple Uni-
versity Hospital EEG Seizure Corpus (TUSZ) [33]. Empiri-
cal study demonstrated good performance with accuracies of
99.4%, 95.4% and 97.0% for the CHB-MIT, HUH and TUSZ
datasets, respectively, and being able to locate the seizure onset
regions with less false positive rates. Compared with existing
studies, the proposed procedure uses the least training data
while outperforms many of them trained with much higher
training rates.

The paper is organized as follows. Section II describes three
publicly available datasets and the study plan. Sections III
and IV outline the feature extraction and artifact removal via
the SCICA and a knowledge enhanced sparse waveform rep-
resentation, respectively. Section V presents the change-point
detection for changes in the covariance among the seizure-
related ICs, which are used to generate adaptive segmentation
for feature aggregation. The ensemble binary classifier based on
the random forest is outlined in Section VI, with the empirical
performance of the proposed method reported in Section VII.
Section VIII provides a discussion.

II. DATA AND STUDY PLAN

Three publicly available datasets, the CHB-MIT dataset1, the
HUH dataset2, and the TUSZ dataset3, are used for empirical
evaluation. The detailed analysis of the first two datasets are
reported in Section VII, where we leave the last one in the
supplementary material (SM). The CHB-MIT dataset consists
of long-term (>20 hours) EEG recordings from 24 patients. The
HUH dataset comprises EEG time series of 79 newborns with
about two hours duration for each newborn, and were indepen-
dently labeled by three experts. As the three experts did not
give identical labelling of seizure events, we took the majority
vote in labeling seizure periods, namely label a period as a true
seizure if it was regarded so by at least two experts, which
resulted in 46 newborns containing at least one seizure onset.
We selected these 46 newborns in the analysis. Detailed patient
information such as the age and EEG duration are available
in Tables S1 and S2 of the SM. EEG signals in the datasets
were recorded following the international 10-20 system with
a sampling frequency of 256 Hz. The EEG records were pre-
processed by a band pass filter from 0.53 to 70 Hz along with
a 50 Hz notch filter. As reported in Table S1 of the SM, the
CHB-MIT data are very imbalanced with the percentages of
seizure onset time ranging from 0.07% to 1.57%, which was the
reason that many existing methods were developed with 80% or

1https://physionet.org/physiobank/database/chbmit/
2https://zenodo.org/record/4940267/
3https://isip.piconepress.com/projects/tuh_eeg/
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Fig. 1. Flow chart of the proposed seizure detection procedure which
consists of two parallel flows leading to seizure classification by the random
forest. The left flow (in red) uses SCICA to select seizure related ICs and
extract features related to EEG oscillations. The right flow (in blue) uses
OMP for sparse waveform features. The center block (in green) is a statistical
change point detection algorithm for adaptively splitting the data into station-
ary segments.

higher training samples. We aim at algorithms trained on much
smaller samples.

Our goal is to construct an efficient feature extraction proce-
dure that generalized well to the remaining test set. To achieve
this, we consider in the next two sections two parallel feature
extraction procedures as demonstrated in Fig. 1. One is to iden-
tify seizure related ICs by utilizing the SCICA, which are then
used to recover artifact-free signals via the inverse ICA trans-
form. The other is a knowledge-based procedure that screens
for clinically significant abnormal waveforms. Furthermore, the
proposed method is doubly robust as it is a hybrid of the data
driven SCICA features and the knowledge guided waveforms,
as it has seizure classification power if either of the features
is utilized.

Features are extracted from both of these procedures. For
the acquired ICs, local variance and variance ratio features
are formulated to capture changes in amplitude and variability,
which are motivated by clinical observations that the EEG
often become more oscillatory cross channels during seizure
onsets [27]. By considering the variance features of seizure
related ICs, the obtained procedure is robust against interfer-
ence of artifacts or patient movements, which could otherwise
lead to undesirable increases in variance. For the waveform
representations, sparse wave strength and frequency are con-
structed, respectively.

III. SPATIALLY CONSTRAINED INDEPENDENT

COMPONENT ANALYSIS

This section outlines the procedure for artifacts free local
variance and variance ratio extraction based on a seizure re-
lated ICs selection via SCICA. It applies soft constraints when
obtaining the seizure related ICs from the EEG series, which
makes the ICs transferable from training to testing data.

The unconstrained ICA [19] admits the following linear time
series model for the observed multi-channel EEG series:

x(t) =As(t), (1)

where x(t) = [x1(t), . . . , xp(t)]
T , t= 1, . . . , T , is the

zero-mean p-dimensional EEG observation at time t,

s(t) = [s1(t), . . . , sp′(t)]T is a zero-mean p′ dimensional
innovation process also called as ICs, whose elements are
independent among the channels but are likely temporally
dependent, and A is a p× p′ mixing matrix. For the
conventional scalp EEG data, p= p′ = 21. The ICA assumes
that at most one IC is Gaussian distributed for the sake of
identification.

Consider spatially whitened signals

z(t) = V x(t) = V As(t) :=Hs(t), (2)

where V =Σ−1/2 and Σ is the covariance of x(t). It is as-
sumed that x(t) are segmented stationary so that their covari-
ance matrices are time-invariant over each time segment. We
will provide a change-point detection method to estimate these
segments in Section V. Without loss of generality, one may
assume H is an orthogonal matrix for identifiability.

To solve for the ICs from z(t), the FastICA algorithm [34]
may be used, which maximizes a contrast function based on a
measure called negentropy. One may also solve the ICs using
the nonparametric maximum likelihood estimation proposed by
Samworth and Yuan in [35].

A. Spatially Constrained ICs

A primary purpose of applying ICA to EEG data is arti-
fact removal. However, such removal usually requires manual
selection of the artifact related ICs. We present an automatic
approach utilizing SCICA [20] to identify the seizure related
ICs with the help of labeled data. The SCICA refines the
ICA framework by introducing additional constraints to reflect
aspects of clinical knowledge to guide the estimation of the
mixing matrix A.

The SCICA has the mixing matrix A= [Ac,Au], where Ac

represents spatially constrained time invariant part while Au

for unconstrained time varying part. To reflect the new setting,
Model (1) is written as

x(t) =Acsc(t) +Au(t)su(t) =As(t), (3)

where sc(t) and su(t) are the spatially constrained and uncon-
strained ICs, respectively, and the constrained sc(t) need not
be independent. Although Au(t) is time varying, most of the
seizure related information would be in the constrained part
Acsc(t). As Au(t) is less important, we solve for the SCICA
parameters in time moving segments to deal with the time-
changing aspect of Au(t).

Our treating sc(t) as seizure-related ICs is different from the
existing methods whose spatially constrained ICs are mainly for
artifacts [36]. In these studies, the artifacts have well-defined
positions, such as ocular artifacts caused by blinks are largely
confined at EEG channels Fp1 and Fp2. As we interpret sc(t)
for underlying seizure activities, Ac determines the transfor-
mation from sc(t) to x(t), while the normal neural activities
and artifacts are left in su(t). By considering seizure related
features in sc(t), we achieve natural artifact removal. One may
apply the manual artifact related ICs removal procedure to clean
the EEG series before the SCICA step.
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For parameter estimation, we first give a p× d constraint
matrix A0

c with d spatial constraints, and denote

H = [Hc,Hu] := V A= [V Ac,V Au]

as defined after (2). We treat the initial Hc =H0
c = V A0

c .
At each step, we find the unconstrained Hu given previous
Hc and update Hc given Hu iteratively, by combining the
FastICA method and repeated Gram-Schmidt orthogonalization
as detailed in the SM. Let h0

cj and ĥcj be the j-th column of
H0

c and Ĥc, respectively, where Ĥc as an estimator of Hc.
Since Hc is assumed to be close to H0

c , the soft constraint
algorithm [20] will update ĥcj if |arccos((h0

cj)
T ĥcj)|> α for

an angle α in radians. In that case, ĥcj is projected towards h0
cj

such that |arccos((h0
cj)

T ĥcj)|= α. More details on the SCICA
algorithms are available in the SM.

Since the source of seizures can vary among individuals, we
now discuss how to obtain the initial A0

c for the SCICA. There
are unsupervised attempts [37] that used the Renyi entropy and
kurtosis to decide the artifact related ICs. Here, we turn to the
labeled data, with the state of seizure or otherwise is known
from annotations provided by neurologists. We first estimate
Â

0
and ŝ0(t) using the unconstrained FastICA algorithm, and

then select sc(t) which are the most correlated with the onset
of seizure or have the largest relative energy using the labelled
segments. To achieve this, given a training EEG dataset with
accompanied clinic labels, let T1 and T2 be the labeled time in-
dex sets of the seizure and non-seizure periods, respectively. We
first calculate Spearman’s correlation coefficients ρ̂ij between
an IC ŝ0i (t) and the EEG records xj(t) over the seizure periods
t ∈ T1. By choosing k ICs that have the k-largest correlations,
we obtain candidate seizure related ICs ŝ0i (t) for i ∈ S1 where
the selected IC index set

S1 =

⎧
⎨

⎩
i :

1

p

p∑

j=1

ρ̂ij > ζ1k

⎫
⎬

⎭
, for i= 1, . . . , p, (4)

and ζ1k is a threshold level such that |S1|= k, and k is a tuning
parameter that will be defined later. In addition to the correla-
tion, we also calculate the energy ratio of the ICs between the
seizure on-site time set T1 and off-site time set T2:

ERi =

(

|T1|−1
∑

t∈T1

(ŝ0i (t))
2

)/(

|T2|−1
∑

t∈T2

(ŝ0i (t))
2

)

.

We then choose the first k ICs that maximize the energy ratio. To
be specific, define S2 = {i : ERi > ζ2k}, where ζ2k is another
threshold level. Combining the correlation and energy ratio
results, the index set of the seizure related ICs is S = S1 ∩ S2.
For the empirical study, we chose k so that |S|= d, which
then determines the two thresholds ζ1k and ζ2k. Finally, the
spatial constraints Â

0

c = Â
0

S , where Â
0

S is a p× d matrix with
columns selected from S .

Although the ICA and SCICA algorithms used in the above
ICs selection are existing methods, the active selection of
seizure related ICs via labeled data outlined above is a new
formulation as well as the feature extraction and aggregation
procedures in the next subsection.

B. Local Variance Features

Given the estimated Â
0

c , the SCICA can be used for the
whole EEG series to estimate Â and ŝ(t) by applying the
SCICA algorithm as detailed in SM. The filtered EEG series
y(t) = [y1(t), . . . , yp(t)]

T = Âcŝc(t), which will be used as a
signal enhanced version of the raw EEG observation x(t).

We extract two features, the local variance and variance ratio,
from the signal enhanced average ȳ(t) = p−1

∑p
i=1 yi(t). The

local variance σ̂2
ȳ(t) is obtained by applying the Nadaraya-

Watson kernel smoothing on the estimated residuals ε̂(t) =
ȳ(t)− ỹ∗(t) so that

σ̂2
ȳ(t) =

∑

z
Kb(t− z)ε̂2(z)

∑

z
Kb(t− z)

and ỹ∗(t) =

∑

x
Kh(t− x)ȳ(x)

∑

x
Kh(t− x)

,

(5)

where h and b are two smoothing bandwidths and Kh(u) =
h−1K(u/h) for a kernel K(u) which is a probability density
function itself. The bandwidths balance the bias and variance
trade-off and control the smoothness of the estimated functions,
which are determined by the cross-validation method.

Let σ̂2
x̄(t) be the local variance of x̄(t) = p−1

∑p
i=1 xi(t),

that is similarly defined as σ̂2
ȳ(t). The local variance ratio is the

proportion of variance captured by ȳ(t) relative to the variance
of the raw average x̄(t):

r̂ȳ/x̄(t) = σ̂2
ȳ(t)/σ̂

2
x̄(t). (6)

The variance and variance ratio features for a patient from
the CHB-MIT dataset are shown in Fig. 2. It is clear that the
SCICA preserved most of the seizure information and removed
the artifacts such as the high frequency oscillation.

IV. SPARSE WAVEFORM REPRESENTATION

In addition to the amplitude and oscillation features captured
by local variance and variance ratio in Section III, it is known by
neurologists that certain typical epileptic EEG waveforms are
strongly correlated with seizure onset [38], and are commonly
used in clinical diagnosis. The existing methods tend to employ
a complete set of basis functions to capture the seizure induced
waveforms. However, relying on complete bases lead to many
basis functions with non-zero coefficients and hence dense rep-
resentations of seizure waveforms. The latter can cause much
feature variability. We take another route aiming for sparse
representation by using a limited number of bases to mimic the
typical seizure related waveforms, and abandon the complete-
ness of the basis functions. With the basis functions mimicking
the clinically recognized waveforms, the interpretability of the
detected signals is enhanced.

A. Sparse Waveform Dictionary and OMP

To learn from the clinical knowledge on the epileptic wave-
forms and attain sparse representation of seizure waveform
signals, we consider four basis functions {φj(t)}4j=1, whose
form are given in Table I. The first three basis functions indicate
important epileptiform discharges, which we deliberately make
not that many for sparse signal representation. Among them,
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Fig. 2. An SCICA analysis on Patient 1 of the CHB-MIT dataset. The left and right panels display two 10 seconds segments from seizure and non-seizure
periods, respectively. The gray lines in Panels (a) and (b) were the raw EEG series x(t) while the black lines were the seizure enhanced signal series y(t)
via the SCICA. Panels (c) and (d) display the local variance σ̂2

ȳ(t) and variance ratio r̂ȳ/x̄(t).

the “sinusoidal wave” (j = 1) are used to represent the “slow
waves”, and the “sharp/spike” (j = 2) for spike (40∼ 70ms)
and sharp (70∼ 200ms) waves. The “sharp wave complex”
(j = 3) is a combination of the first two members. The “Haar
wave” (j = 4) acts to alleviate over-fitting instead of being a tar-
geted waveform. It is noted that φ1 can be expressed linearly by
φ2 and φ3. Hence, it was not actually used. The basis functions
are all compactly supported.

By utilizing these basis functions, a location-scale waveform
dictionary is constructed in the form of

Φj(t, k, λ) =
√
λσj(φj(tλ− k)− μj), j = 1, . . . , 4, (7)

where k is a location shift parameter and λ is the target
frequency attached within to a basis φj(·), μj and σj are
location and scale parameters in the outer layer. The wave-
form dictionary {Φj(t, k, λ)} satisfies

∑
t Φj(t) = 0 and en-

ergy
∑

t Φj(t)
2 = 1, echoing the admissibility conditions on

the wavelet bases. The candidate frequency range of λ are

provided in Table I, where the frequency of “sinusoidal” part
λ1
3 ranges from 2Hz to 8Hz, covers part of the δ band, the entire

θ band and the start of α band. The uncovered δ band (less than
2 Hz) was rarely used in practice, and thus was not considered
in the dictionary.

To define the dictionary in matrix form, let Φj,k,λ =
[Φj(1, k, λ), · · · ,Φj(T, k, λ)]

T ∈ R
T . Note that there are 20

candidate λ for j = 2, 30 λ for j = 3 and 7 λ for j = 4. Thus,
if we stack Φj,k,λ by columns with all possible values of
(j, k, λ), we have a basis matrix Ψ= [Φj,k,λ](j,k,λ) ∈ R

T×57T .
Given the observed EEG time series at channel i as xi =
[xi(1), . . . , xi(T )]

T , the goal of OMP is to find top m basis
functions in Ψ which best match to xi via regression

xi =Ψiβi + εi, (8)

where Ψi ∈ R
T×m is a submatrix consists of m columns in Ψ,

βi is the regression coefficient vector indicating the strength of
the basis functions and εi is the residual. We do not assume (8)

Authorized licensed use limited to: Peking University. Downloaded on December 20,2023 at 08:58:06 UTC from IEEE Xplore.  Restrictions apply. 
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TABLE I
THE DESIGNED SEIZURE WAVEFORM DICTIONARY WITH THE SINUSOIDAL AND THE SHARP/SPIKE WAVE AS BASIC UNITS. THEIR COMBINATION, THE SO

CALLED SHARP WAVE COMPLEX PATTERN, IS ALSO CONSIDERED SINCE IT HAS A DIRECT ASSOCIATION TOWARDS THE SEIZURE ONSET. PARAMETERS μj

AND σj ARE CHOSEN SUCH THAT
∫
Φdt= 0 AND

∫
Φ2dt= 1, WHILE f REPRESENT THE SAMPLING FREQUENCY

Algorithm 1: The OMP procedure for channel i
Input: Ψ, xi, m.
Output: Ψ̂i, β̂i

1 Set l = 1.
2 Initialize the selected basis set Ψ̂i = 1T to be the unit

vector of length T .
3 Set residual εi = xi.
4 while l ≤m do
5 Select a column Φl

j,k,λ in Ψ that maximizes the
absolute value of inner product |〈Φl

j,k,λ, εi〉|;
6 Update the selected basis set Ψ̂i to [Ψ̂i,Φ

l
j,k,λ];

7 Exclude column Φl
j,k,λ from Ψ;

8 Conduct the regression xi = Ψ̂iβi + εi, and
estimate βi by the ordinary least square estimator

β̂i = (Ψ̂
T

i Ψ̂i)
−1Ψ̂

T

i xi;
9 Updated εi to xi − Ψ̂iβ̂i.

10 end

is correctly specified as it is only a vehicle for selecting matched
waveforms from the dictionary.

For each channel, the OMP can be implemented as stated
in Algorithm 1. The OMP algorithm is essentially a linear
regression combined with variable selection, where the selected
variables are from the basis vectors which indicate the location
and strength of the waveforms in the EEG series. If the maxi-
mum number of selected basis m is small, the OMP would have
sparse solutions. One may also use the AIC or the BIC as the
stopping rule of the OMP procedure.

At the end, the time complexity of OMP is O(T 2) for the
inner product and O(m2T +m3) for linear regression. How-
ever, since the basis functions have compact support (≤ f in
Table I), the time complexity of inner product can be reduced
to O(T ) using their sparsity. Thus, the total time complexity
of OMP is O(T ) for a fixed m, making it a suitable algorithm

for high frequency EEG data. In real applications, we chose
m= 8T/256 to be eight waveforms per seconds given the sam-
pling frequency to be 256Hz. In this case, we prefer applying
OMP at some shorter segments in the consideration of comput-
ing efficiency.

B. Wave Strength and Frequency Related Features

For the purpose of lowering the feature dimension, we aggre-
gate the OMP coefficients with respect to the wave types and
brain regions by extracting the basis functions and coefficients
corresponding to “sharp/spike” (j = 2) and “sharp wave com-
plex” (j = 3).

The coefficient β̂i,j,k,λ associated with the basis Φj,k,λ ∈ Ψ̂i

is mapped to a function with exactly one non-zero value at
location k. Formally, define two feature time series

SHARPi(t) =

T∑

k=1

∑

λ2

T∑

t=1

|β̂i,j=2,k,λ|I(t= k) and (9)

SWCi(t) =
T∑

k=1

∑

λ1
3,λ

2
3

T∑

t=1

|β̂i,j=3,k,λ|I(t= k), (10)

corresponding to the two waveforms. The feature dimensions
were 42 after the aggregation, as there are p= 21 EEG
channels crossed with two types of waveforms. To reduce the
feature dimensions, we aggregate the channel level features (9)
and (10) to the eight functional regions of the brain, as shown
in Fig. 3. The feature series are aggregated to the eight regions
by taking averages over the channels i located in a region Rs

in the scalp as

R-SHARPs(t) =
1

|Rs|
∑

i∈Rs

SHARPi(t) and (11)

R-SWCs(t) =
1

|Rs|
∑

i∈Rs

SWCi(t), (12)

where |A| denotes the cardinality of set A.
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Fig. 3. Eight functional regions (marked in different colors) defined by our
algorithm. The channel level waveform features are further aggregated into
these regions for dimension reduction.

V. CHANGE POINT DETECTION

In this section, we introduce a change-point detection algo-
rithm to adaptively partition the time series sc(t) in (3) to seg-
ments for further temporal aggregation of the feature series that
have been developed so far. The goal is to establish stationary
segments with estimated change points corresponding to the
start and end times of an epileptic seizure episode.

The reason for conducting the change-point detection is
to counter the non-stationarity exhibited in the spatially con-
strained seizure related ICs ŝc(t). For notation simplification,
we write ŝc(t) as s(t) = {s1(t), . . . , sd(t)}. Since x(t) has
been high-pass filtered, both x(t) and s(t) should have zero
mean, the non-stationary phenomenon should be largely shown
in the second-order covariance. Thus, the focus of the change
points detection is on the covariance structure.

The multi-channel seizure related ICs s(t) are assumed to
follow a piece-wise locally stationary wavelet (LSW) model
[39]. Specifically, denote the locations of N change-points as
0 = η0 < η1 < η2 < · · ·< ηN < ηN+1 = T . Let u= t/T be the
rescaled time, and the rescaled change points νm = ηm/T . For
i= 1, . . . , d, the LSW model is expressed as

si(t) =
−1∑

f=−∞

∞∑

k=−∞
Wif (k/T )ψf (t− k)ξif (k), (13)

where ψf (k) = 2f/2I(0≤ k ≤ 2−f−1 − 1)− 2f/2I(2−f−1 ≤
k ≤ 2−f − 1) is the mother wavelet at scale f in the fre-
quency range and location k of the Haar wavelets, {ξif (k)}
are stochastic disturbances and {Wif (k/T )} are the wavelet
coefficients. Here scale f ∈ {−∞, . . . ,−1} is a synonym of
frequency band, and the finest frequency band corresponds
to f =−1. If F denotes the sampling frequency, the fre-
quency band at scale f is roughly [2fF, 2f+1F ). More-
over, given a f , we assume ξf (k) = [ξ1f (k), . . . , ξdf (k)]

T

are independently distributed with mean 0 and covariance
matrix Σf (k/T ) = (Σ(i,j),f (k/T )) where Σ(i,i),f (k/T )≡ 1,
cov(ξif (k), ξjf ′(k′)) = δff ′δkk′Σ(i,j),f (k/T ), and δff ′ is the
Kronecker delta function.

Under the LSW model, the covariance function of si(t)
is determined by W f (k/T ) = [W1f (k/T ), . . . ,Wdf (k/T )]

T

and Σf (k/T ). Following the piece-wise stationary assump-
tion, Wif (k/T ) : [0, 1]→R and Σ(i,j),f (k/T ) : [0, 1]→R are
piece-wise constant with unknown number of change points,
and we denote the change points at scale f as

Bif = {z ∈ (0, 1) : lim
u→z−

Wif (u) �= lim
u→z+

Wif (u)} and

B(i,j),f = {z ∈ (0, 1) : lim
u→z−

Σ(i,j),f (u) �= lim
u→z+

Σ(i,j),f (u)}.

It is clear that the autocovariance and cross-covariance func-
tions have identical change points inherited from the piecewise
constancy of Wif (t) and Σ(i,j),f (t). Thus,

{νm}Nm=1=
{
∪−1
f=−∞ ∪d

i=1 Bif

}
∪
{
∪−1
f=−∞ ∪d

i,j=1 B(i,j),f

}
.

In seizure detection and neuroscience, the EEG signals at a
specific frequency band may have clinical meanings. For this
purpose, we define

ν(f) =
{
∪d
i=1Bif

}
∪
{
∪d
i,j=1B(i,j),f

}

be the set of change points in the scale f .
The following assumptions are required for establishing con-

sistency of the cumulative sum (CUSUM) change-point detec-
tor based on the LSW Model (13).

Assumption 1: (Gap of change points). (i) Any two adjacent
change points νm, νm+1 ∈ ν(f) satisfy |νm+1 − νm| ≥ δT �
TΘ−1 for a Θ ∈ ( 34 , 1]. (ii) The underlying change points should
be balanced so that

max

(
νm − νm−1

νm+1 − νm−1
,

νm+1 − νm
νm+1 − νm−1

)

≤ c∗ ∈ [0.5, 1).

Assumption 2: (Signal strength). (i) The wavelet coef-
ficients Wif (u) in (13) is bounded such that |Wif (u)| ≤
2f/2C uniformly over all f ≤−1 and i= 1, . . . , d. (ii) Let
Lif =

∑∞
u=−∞ |(Wif (u))

2 − (Wif (u− 1))2| and R(i,j),f =∑∞
u=−∞ |Σ(i,j),f (u)− Σ(i,j),f (u− 1)| be the total magnitude

of jumps in (Wif (u))
2 and Σ(i,j),f (u), respectively. They

satisfy
∑−1

f=−[log T ] 2
−fLif =O(log T ) uniformly over i ∈

{1, . . . , d} and
∑−1

f=−[log T ] 2
−fR(i,j),f =O(log T ) uniformly

over i �= j ∈ {1, . . . , d}.
Assumption 3: (Distribution). (i) The IC si(t) has zero mean

and is bounded in the sense that there exists a C > 0 such that
|si(t)| ≤ C for all i and t. (ii) The disturbance ξif (k) is sub-
Gaussian distributed in the sense that there exists some r > 0
such that Eeaξif (k) ≤ er

2a2/2 for all real number a.
To detect change points in the second-order structure of

s(t), we can simply detect change points in the wavelet pe-
riodograms and the cross-periodogram sequences, since there
is a one-to-one correspondence between the autocovariance
(i= j) and cross-covariance (i �= j) functions and the wavelet
periodograms and cross-periodograms for the multivariate LSW
model, respectively [40]. Let wif (t) =

∑
u si(u)ψf (t− u) be

the estimated empirical wavelet coefficients, and I(i,j),f (t) =
wif (t)wjf (t), where I(i,i),f (t) is the wavelet periodogram and
I(i,j),f (t) for i �= j is the cross-periodogram.
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By Assumption 3 (i), using the Hoeffding’s lemma,
it can be shown that si(t) is sub-Gaussian distributed.
Under the LSW Model (13), as the finite summation of
sub-Gaussian is also sub-Gaussian, by Assumption 3 (ii),
the sample periodogram I(i,j),f (t) can be represented as
σ(i,j),fZ(t)2 where Z(t) is sub-Gaussian distributed, and
E[I(i,j),f (t)] are (asymptotically) piece-wise constant.
However, when i �= j, the cross-periodograms I(i,j),f (t) are
not scaled sub-exponential distributed, and an adjustment
is needed. The adjustment to I(i,j),f (t) is I(i,j),f (t) =
[wif (t)− sgn{ĉorr(wif (t), wjf (t))}wjf (t)]

2, for i �= j, where
ĉorr(·) denotes the sample Pearson correlation and sgn(·) is
the sign function extracts the sign of a real number.

To define the thresholding test statistic, let
I(i,j),f = (I(i,j),f (1), . . . , I(i,j),f (T ))

T ∈ R
T and If =

{I(i,j),f}i,j=1,...,d;i≤j ∈ R
T×d′

be a T × d′ matrix, where
d′ = d(d+ 1)/2 and d is the number of spatially constrained
ICs (SCICs). Given a f -th scale or band, on a candidate interval
[t1, t2] for 1≤ t1 < t2 ≤ T with sample size l = t2 − t1 + 1,
the CUSUM statistic [41] based on If at time b ∈ [t1, t2] is

Ct1,t2(b, If ) =
∑

i,j=1,...,d;i≤j

C∗
t1,t2(b, I(i,j),f )

× I(C∗
t1,t2(b, I(i,j),f )> τ(i,j),f ) where

C∗
t1,t2(b, I(i,j),f ) =

∣
∣
∣
∣
∣

√
t2 − b

l(b− t1 + 1)

b∑

t=t1

I(i,j),f (t)

−
√

b− t1 + 1

l(t2 − b)

t2∑

t=b+1

I(i,j),f (t)

∣
∣
∣
∣
∣
/σ̂t1,t2(I(i,j),f ),

where τ(i,j),f is a scale f and variable (i, j) specific thresh-
old whose choice will be discussed in Theorem 1, and
σ̂t1,t2(I(i,j),f ) = l−1

∑t2
t=t1

I(i,j),f (t) is a scaling factor which
standardizes the discrepancy statistic in the numerator.

We first consider the CUSUM statistic C1,T (b, If ) over the
entire range. If C1,T (b, If )> 0 for a b ∈ [1, T ], there might
be periodograms or cross-periodograms I(i,j),f which contrast
significantly between the adjacent time segments [1, b] and
[b+ 1, T ]. A detected change point η̂ over [1, T ] at scale f is

η̂ = argmax
1+c∗l≤b≤T−c∗l

C1,T (b, If ) with C1,T (b, If )> 0 (14)

for any b ∈ [η̂ −ΔT , η̂ +ΔT ], where ΔT is a tuning parame-
ter whose order is specified in Theorem 1, and the restriction
C1,T (b, If )> 0 in (14) is to avoid spurious change points. If
such a η̂ cannot be found, we will stop the search over [1, T ];
otherwise we add η̂/T to the detected change point set ν(f)

at scale f and try to locate the next change point using the
binary segmentation approach. The binary segmentation splits
the interval [1, T ] into [1, η̂] and [η̂ + 1, T ], and then apply the
procedure (14) in each of the two sub-intervals, and continues
until the entire interval has been searched at scale f . The final
detected change points {η̂m}N̂m=1 is the union of the change
points at all interested scales f . We estimated the change points
at five frequency bands: 2∼4Hz, 4∼8Hz, 8∼16Hz, 16∼32Hz

and 32∼64Hz in the empirical study which correspond to
f =−7, . . . ,−3, respectively, as these frequency bands cover
most seizure activities [42], [43].

Cho and Fryzlewicz [40] established the consistency of a
change-point detection algorithm based on the binary segmenta-
tion with Gaussian noise, namely {ξif (k)} in (13) are Gaussian
distributed. As the SCICs of the EEG data may not be Gaussian
and in fact it was insisted on being non-Gaussian [19], we
establish the consistency of the proposed change points detec-
tion for sub-Gaussian innovations in the next theorem whose
proof is given in the SM. Recall that δT is the lower bound
for the gap times between any two adjacent change points in
Assumption 1 (i).

Theorem 1: Under Assumptions 1 - 3 and either (i) if the
number of change points N is fixed such that δT � T 0, choose
ΔT � εT = log2+ϑ(T ) for a positive constant ϑ and the thresh-
old levels τ(i,j),f = κ(i,j),f log

1+ω(T ) for a ω > ϑ/2 or (ii) if
δT � TΘ−1 for a Θ ∈ ( 34 , 1), choose ΔT � εT = T 2−2Θ and
τ(i,j),f = κ(i,j),fT

γ for a γ ∈ (1−Θ,Θ− 1/2) for positive
tuning parameters κ(i,j),f , then as T →∞, the detected change
points {η̂m}N̂m=1 satisfy that

P{N̂ =N ; |η̂m − ηm|<CεT for m= 1, . . . , N}→ 1

for a positive constant C and with the scale
f ∈ [−α log log T,−1] for an α ∈ (0, 2 + ϑ].

The theorem shows that the number and location of the
change points can be consistently estimated by the proposed
change point detection procedure. The threshold level τ(i,j),f
depends on a tuning parameter κ(i,j),f . The selection of κ(i,j),f

can be achieved via simulated wavelet periodograms under the
null hypothesis of no-change points over an interval, which
is detailed in the SM and used in the empirical study. The
estimated κ(i,j),f for each patient is chosen to be the upper 20%
quantile of the simulated results. We chose the other tuning pa-
rameter ΔT = (log T )2 in empirical implementation assuming
the number of change-point is finite.

VI. FEATURE AGGREGATION AND SEIZURE CLASSIFIER

We are to aggregate the features obtained from the SCICs
and the OMP as discussed in Sections III and IV based on the
detected change points in Section V. The aggregated features
will serve as inputs to the random forest (RF) classifier [44],
and the potential seizures can be detected at these segments.

It is inconvenient for the RF classifier to use these feature
time series as inputs. We need to aggregate them based on a tem-
poral splitting scheme in the time domain. There are two tem-
poral splitting schemes. One is an adaptive temporal splitting
based on the detected change-points {η̂m}N̂m=1 in Section V;
and the other is the fixed splitting scheme with fixed segment
length over the entire sampling period, which is commonly
used in existing methods. We advocate for the adaptive splitting
based on the detected change points.

Recall that the feature time series from the SCICs are the
local variance σ̂2

ȳ(t) and variance ratio r̂ȳ/x̄(t) given in (5) and
(6) in Section III-B, and the waveform features R-SHARPs(t)
and R-SWCs(t) in (11) and (12) are defined in Section IV-B.

Authorized licensed use limited to: Peking University. Downloaded on December 20,2023 at 08:58:06 UTC from IEEE Xplore.  Restrictions apply. 



TONG et al.: ENSEMBLED SEIZURE DETECTION BASED ON SMALL TRAINING SAMPLES 9

For the local variance, the adaptive splitting feature aggregation
over segment {ηk−1 + 1, ηk} is

strength-σ̂2
ȳ(k) =

1

η̂k − η̂k−1

η̂k∑

t=η̂k−1+1

σ̂2
ȳ(t).

This can be viewed as the “strength” aggregation as it takes
average of the feature series samples inside the segment. The
same aggregation can be applied to the local variance ratio
r̂ȳ/x̄(t), and the waveform feature series R-SHARPs(t) and
R-SWCs(t). Besides the “strength” type aggregation, we for-
mulate a “frequency” type aggregation, for instance that to-
wards R-SWCs(t) is

freq-R-SWCs(k) =
f

η̂k − η̂k−1

η̂k∑

t=η̂k−1+1

I(R-SWCs(t) �= 0),

where I(·) is the indicator function and f is the sampling
frequency. Similar formulation can be made for R-SHARPs(t).
There are a total 34 aggregated features as summarized in
Table S3 of SM. For comparison, we also consider feature
aggregation base on fixed temporal splitting. For instance,

1

2f

2kf∑

t=2(k−1)f+1

σ̂2
ȳ(t) and

1

2

2kf∑

t=2(k−1)f+1

I(R-SWCs(t) �= 0)

are the local variance and the R-SWCs(t) with fixed two-second
aggregation, respectively.

It is noted that there is a sharp imbalance between the seizure
and non-seizure segments in the EEG data. This means that the
weighted RF has to be used to reweigh the aggregated features
with respect to the segment length and the chance of the seizure.
The weight to each aggregated feature is the product of the
segment length and the inverse proportion to class frequencies.
It was found the overall classification results were robust with
respect to the minority weight ranging from 1 to 100. The
weighted RF effectively measure the feature importance by the
“impurity” score which is constructed via the Gini criterion.

Several issues have to be addressed before we train the
weighted RF classifier, which include labeling of the segments
for training, and the training and validation samples determina-
tion. Given a training sample proportion, say R%, of the total
observations T , the training sample for SCICA was selected
by a stratified sampling framework as detailed in the SM. The
training segments used for the RF, due to the involvement of the
change-point detection, are different from the training sample
for the SCICA. The training segments are obtained by first
conducting the change-point detection outlined Section V on
the full data sample, followed by matching the segments deter-
mined by the detected change-points with the SCICA training
sample. If a detected segment (for either seizure or non-seizure)
has more than 50% of its time points contained in the SCICA
training sample, it is kept as a training segment for the RF, with
the remaining segments used as part of the validation sample.
The exact size of the training segments may not be exactly R%,
but should be around it.

In the RF implementations, we used the default hyperparam-
eters setting in the Ranger R package [45], which was based on
500 classification trees with unlimited tree depth, and used the
Gini index as the default tree splitting criteria with minimum
node size 10. The output of the RF classifier is the seizure
probability which can be further used to determine the opti-
mal threshold.

As a binary classification problem, it is crucial to determine
the probability threshold for identifying seizure segments. The
higher the threshold is, the harder a segment is classified as
seizure, and the RF classifier is more conservative. This leads
to a trade-off between the true positive rate (TPR) and false
positive rate (FPR) with respect to the threshold levels. Mo-
tivated by Liu et al. [46] in the context of allocation of Gold
standard testing, we choose the threshold that strikes a bal-
ance between TPR and FPR by maximizing w1TPR − w2FPR,
where w1 and w2 are weights specified by the user. Since
the cost of FPR and benefit of TPR are not the same, we set
w1 = 30 and w2 = 1 with the candidate thresholds chosen from
{0.01, 0.02, . . . , 0.99} to limit the false negative rate, as it is
worse to miss a seizure onset event.

VII. RESULTS

We applied the proposed patient-specific seizure detection
algorithm, executed via the weighted RF classifier with the
aggregated features constructed in Section VI on both the CHB-
MIT and HUH datasets. For the CHB-MIT dataset, we allocated
a training rate of 5% (about one hour of data), while for the
HUH dataset, we used 25% for training (about half an hour),
with the remaining data for validation.

A. Performance Metrics

We first outline four basic attributes used to define the per-
formance metrics on a seizure classifier. As a binary classi-
fication problem, all four possible outcomes encompass the
following categories: true-positives (TP), false-negatives (FN),
true-negatives (TN) and false-positives (FP). These attributes
lead to the following performance metrics:

(i) Detection Sensitivity (SENS) TP/(TP+FN);
(ii) Detection Specificity (SPEC) TN/(TN+FP);

(iii) Detection Accuracy (ACC) (TP+TN)/(TP+FN+TN+
FP).

These three metrics are defined in the sample level that has a
resolution of 256 Hz. We also consider (iv) the area under the
receiver operating characteristics curve (AUC) as a perform-
ance measure.

Furthermore, we define two metrics related to the detection
on seizure events or episodes. A correctly (wrongly) detected
seizure event is one detected seizure event that contains at least
one (no) seizure label. Let N1, N2 and N be the number of
correctly detected, wrongly detected and total seizure events,
respectively, which lead to the events related metrics:

(v) The percentage of failure to detect events (FDE) (1−
N1/N) ∗ 100%

(vi) The number of false-positive alarm rate per hour (FAR),
which is N2/Th,

where Th = T/3600/256 is the number of observation hours.
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TABLE II
PERFORMANCE OF SIX EXISTING SEIZURE DETECTION ALGORITHMS AND THE PROPOSED METHOD FOR THE CHB-MIT DATASET. THE PERFORMANCE

MEASURES ARE SENSITIVITY (SENS), SPECIFICITY (SPEC), ACCURACY (ACC), AREA UNDER THE RECEIVER OPERATING CHARACTERISTICS (ROC)
CURVE (AUC), FAILURE DETECTION EVENT (FDE), AND FALSE-POSITIVE ALARM RATE PER HOUR (FAR). THE LAST COLUMN REPORTS THE

NUMBER OF PATIENTS USED IN VARIOUS STUDIES

References SENS % SPEC % ACC % AUC FDE % FAR/h Training rate % Studied patients number
Zarei and Asl [47] 96.8 97.3 97.1 - - - 90 23
Cimr et al. [48] 97.1 96.9 97.0 - - - 90 24
Bhattacharyya and Pachori [8] 97.9 99.6 99.4 1.00 - - 90 23
Guo et al. [49] 95.6 92.6 92.6 - 0.0 1.38 25 24
Zabihi et al. [50] 91.2 95.2 95.1 0.93 - - 25 23
Kiranyaz et al. [51] 89.0 94.7 - - - - 25 21
Proposed method 95.7 99.4 99.4 0.99 0.0 1.30 5 24

TABLE III
PATIENT-SPECIFIC PERFORMANCE MEASURES FOR THE PROPOSED SEIZURE DETECTION METHOD IN THE CHB-MIT DATASET. ADAPTIVE

SPLITTING AND THE FIXED SEGMENTS DESIGNS HAVE BEEN USED FOR FEATURE AGGREGATION

Adaptive splitting Fixed two seconds segments
Duration Events Duration Events

SENS SPEC ACC AUC FDE FAR SENS SPEC ACC AUC FDE FAR
chb01 99.2 100.0 100.0 1.00 0.0 0.00 94.3 100.0 100.0 1.00 0.0 0.00
chb02 99.3 100.0 100.0 1.00 0.0 0.00 100.0 100.0 100.0 1.00 0.0 0.03
chb03 98.8 99.7 99.7 1.00 0.0 0.13 100.0 99.7 99.7 1.00 0.0 0.11
chb04 98.0 99.9 99.9 0.99 0.0 0.24 91.4 99.9 99.9 0.98 0.0 0.45
chb05 93.6 100.0 100.0 1.00 0.0 0.00 96.7 96.7 99.9 1.00 0.0 0.10
chb06 85.5 100.0 100.0 0.95 0.0 1.06 59.9 99.7 99.7 0.94 30.0 14.11
chb07 92.7 100.0 100.0 1.00 0.0 0.05 93.6 100.0 100.0 1.00 0.0 0.00
chb08 97.4 99.9 99.8 0.99 0.0 0.15 95.9 99.5 99.5 0.99 0.0 1.60
chb09 98.0 100.0 100.0 1.00 0.0 0.00 97.1 100.0 100.0 1.00 0.0 0.00
chb10 95.7 99.8 99.8 0.99 0.0 0.08 97.9 99.9 99.9 1.00 0.0 0.08
chb11 97.2 99.7 99.7 1.00 0.0 0.14 100.0 100.0 100.0 1.00 0.0 0.00
chb12 93.1 95.6 95.6 0.94 0.0 9.90 85.9 89.0 88.9 0.93 0.0 16.95
chb13 93.5 98.2 98.1 0.96 0.0 3.73 94.5 96.9 96.9 0.94 0.0 5.09
chb14 93.3 99.7 99.7 0.99 0.0 0.50 90.3 99.5 99.5 0.99 0.0 1.38
chb15 95.5 96.9 96.9 0.96 0.0 2.41 95.2 97.3 97.3 0.97 0.0 3.32
chb16 88.4 98.8 98.8 0.97 0.0 10.65 80.7 99.4 99.3 0.96 0.0 6.65
chb17 99.4 100.0 100.0 1.00 0.0 0.00 98.8 99.9 99.9 0.99 0.0 0.10
chb18 94.9 99.6 99.6 1.00 0.0 1.03 97.3 98.9 98.9 1.00 0.0 1.46
chb19 99.1 99.9 99.9 1.00 0.0 0.00 100.0 100.0 100.0 1.00 0.0 0.00
chb20 92.7 100.0 99.9 1.00 0.0 0.07 95.2 99.6 99.6 1.00 0.0 0.79
chb21 99.7 100.0 100.0 1.00 0.0 0.09 100.0 100.0 100.0 1.00 0.0 0.00
chb22 95.1 100.0 100.0 1.00 0.0 0.00 97.1 100.0 100.0 1.00 0.0 0.00
chb23 99.5 99.9 99.9 1.00 0.0 0.22 100.0 99.9 99.9 1.00 0.0 0.22
chb24 98.4 99.2 99.2 1.00 0.0 0.68 97.3 99.3 99.3 0.99 0.0 1.27
average 95.7 99.4 99.4 0.99 0.0 1.30 94.1 99.0 99.1 0.99 1.3 2.24
(Standard error) (0.75) (0.22) (0.22) (0.02) (0.00) (0.59) (1.77) (0.48) (0.47) (0.02) (1.25) (0.91)

The metrics (i)-(iv) focus on the consistency of the clas-
sification over the entire duration, while (v) and (vi) on the
classification quality on the event segments. For datasets with
extremely imbalanced seizure and non-seizure periods, just re-
porting the ACC or SPEC can be misleading and overstating
model performance. We recommend using the SENS and FAR
as the key metrics, since they are of critical importance for
clinical acceptance of an algorithm [4].

B. Performance Accuracy

To evaluate the proposed method and the adaptive splitting
aggregation strategy, we compared the performance with the
recent works on both the CHB-MIT and HUH datasets, as
demonstrated in Tables II and IV, while those on the TUSZ
dataset are reported in the SM.

For the CHB-MIT dataset, it shows that the proposed pro-
cedure achieved an average SENS of 95.7% and an average
ACC of 99.4% among all the patients. The proposed method
trained on 5% sample had a slightly lower detection sensitivity
than those using 90% training data samples but significantly
higher than those using 25% training data. This indicates that
the proposed method is attractive in the few shot learning setting
with satisfactory performance. Compared with human experts,
whose average SENS and SPEC were 82% and 99.26%, with
the FAR being 0.117 [52], the proposed procedure achieved
higher SENS and SPEC. The median FAR of our procedure
trained on 5% of the sample is 0.13, which was slightly higher
than the human experts.

Table III presents the patient-specific performance using the
proposed seizure detection procedure, which also shows that the
performance of patients 6, 12 and 16 were slightly lower than
the other patients. The three patients are known to be harder
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TABLE IV
PERFORMANCE OF FOUR EXISTING SEIZURE DETECTION ALGORITHMS, THREE EXPERTS AND THE PROPOSED METHOD WITH TWO TRAINING RATES

(25% AND 50%) FOR THE HUH DATASET. THE PERFORMANCE MEASURES ARE SENSITIVITY (SENS), SPECIFICITY (SPEC), ACCURACY (ACC), AREA

UNDER THE RECEIVER OPERATING CHARACTERISTICS (ROC) CURVE (AUC), FAILURE DETECTION EVENT (FDE), AND FALSE-POSITIVE ALARM RATE

PER HOUR (FAR). THE LAST COLUMN REPORTS THE NUMBER OF NEWBORNS USED IN VARIOUS STUDIES

References SENS % SPEC % ACC % AUC FDE % FAR/h Training Rate % Studied Patients Number
Tanveer et al. [53] 96.7 95.9 96.3 0.99 - - 90 39
Borovac et al. [54] 79.5 93.7 - 0.92 14.5 1.99 97* 38
Raab et al. [55] 82.6 97.6 90.1 - - - 90 12
Mumenin et al. [56] 88.4 93.8 93.4 - - - 70 76
Expert A 86.9 98.4 96.8 - 13.4 0.20 0 46
Expert B 90.8 89.7 93.1 - 8.8 1.57 0 46
Expert C 85.8 97.3 96.5 - 11.5 0.86 0 46
Proposed method 93.0 95.5 95.4 0.95 6.6 1.60 25 46
Proposed method 94.5 96.4 96.0 0.96 6.4 1.41 50 46

*The training rate was attained due to its using the leave one subject out cross-validation.

Fig. 4. A flow chart for the output of the proposed seizure detection procedure. The direct output is the detected seizure onset period (marked as red),
while the indirect output is the important features given by the random forest classifier. For example, we can obtain the potential seizure onset region and
characteristic waveforms from the top five most important features.

to classify and some published studies [8], [50], [51] skipped
the patients. Our analysis showed that, for the three patients,
the energy or local variance during seizure periods were not
significantly higher than those in interictal period, which may
be the reason why they were harder to classify. However, our
unique waveform features showed much difference between
seizure onset and offset periods and were selected as the top
features by the RF classifier.

As indicated above, only a few studies had validated on the
entire data series and all patients of the CHB-MIT dataset. In
most of the existing studies, only those hourly data files (the
CHB-MIT data are organized as hourly files) containing seizure
onset have been used for validation, which could significantly

reduce the sample size due to the small proportion of onset
periods. Such a bias sample selection procedure may elevate
the performance metrics if the validation is not conducted over
the full data. To reflect this aspect, Table II has the last column
marking the number of patients used for validation.

For comparison, Table III also presents the classification
results using the same features extracted by the SCICA and
waveform dictionary but aggregated based on the fixed two-
seconds segments that also had 5% training segments, as an
alternative to the adaptive splitting based feature aggrega-
tion for the random forest classifier. For majority of the pa-
tients, the fixed segment approach had inferior performance
than the classification with the adaptive splitting in the feature

Authorized licensed use limited to: Peking University. Downloaded on December 20,2023 at 08:58:06 UTC from IEEE Xplore.  Restrictions apply. 



12 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 72, 2024

aggregation, both in ACC and FAR, especially for the harder to
detect Patients 6, 12 and 16. These demonstrated the advantage
of the adaptive splitting based feature aggregation.

For the HUH dataset, Table IV reports the performance of
the four existing methods, the proposed method and the three
experts. Comparing with the four existing methods (excluding
the three experts), the proposed method with 25% training rate
was the second best in sensitivity (SENS), accuracy (ACC)
and the area under the receiver operating characteristics curve
(AUC), the third in specificity (SPEC), and the best in both
the failure to detect events (FDE) and the false-positive rate
per hour (FAR). Although Tanveer et al. (2021) [53] had better
performance than the proposed on SENS, SPEC, ACC and
AUC, it was trained with 90% of data, much more than the
proposed. When the training rate of the proposed method was
increased to 50%, all performance metrics improved, and in
particular the SPEC exceeded that of Tanveer et al. (2021) [53]
while the failure to detect and the false positive rates (FDE and
FAR) were even lower.

Comparing with the three experts, the proposed was the best
with respect to the sensitivity and FDE, which are important as
it has a far more worse consequences if one misses a seizure
onset event. The other four metrics were largely comparable
with the experts and were better than Expert B in five (six)
of the six metrics at 25% (50%) training. The detailed patient
level classification performances can be found in Tables S5, S6
and S7 of the SM.

C. Source Regions and Characteristic Waveforms

In additional to the seizure detection with the proposed few
shot detection procedure, we can also find features and brain
regions influential in the detected seizure onsets. These will
enhance the interpretability of the proposed procedure. Inter-
pretability is of great importance for any algorithms being ac-
tual used by medical practitioners as they tend to avoid hard to
understand methods.

The variable importance measure as a by-product of the RF
classifier provides a rank of importance on the derived features.
Among the 34 features, 32 features come from 8 brain regions
with each region having four features on the two waveforms ver-
sus their strength and frequency, and 2 SCICA features on the
local variance and the variance ratio information embedded in
the five SCICs. The top ranked features can provide information
about the seizure onset location and the type of EEG abnormal
waveforms, as both the SCICA and OMP features can be linked
to specific brain regions.

The procedure to obtain seizure onset regions and charac-
teristic waveforms is demonstrated in Fig. 4. The derivation of
the OMP region is straightforward, since it has already been
divided into 8 subregions. For the SCICA region, the topogra-
phies (brain regions) associated with the i-th SCIC appear in
the i-th column of the mixing matrix A0

c , which represent how
the i-th SCIC was mapped to the observed EEG series. By
mapping the absolute value of the i-th column vector of A0

c

to the corresponding channel location of the brain, we locate
the region most associated with the i-th SCIC. To aggregate
the information from the five seizure related SCICs, the SCICA

Fig. 5. Seizure source regions identified from the top five features for
Patients 1 to 4 in the CHB-MIT dataset. The OMP regions indicate the
regions associated with the most important waveform features in the top five
features while the SCICA region shows the average of the source regions
corresponding to the five SCICs, where the red color indicates the seizure
related regions. The confidence towards these regions are shown in percentage,
and red star showed the source region suggested by the doctor.

region is then averaged in the sense that the topographies were
obtained by first forming averages of absolute A0

c by rows and
then mapping the vector to the channel locations.

The identified source regions for Patients 1 to 4 of the CHB-
MIT dataset are displayed in Fig. 5, complemented with the
source regions suggested by a collaborative neurologist (marked
as red stars). Each region identified by the algorithm is linked
with a percentage of its variable importance among the top five
features. It is clear the region marked by the algorithm was close
to the region marked by the neurologist, especially for patients 1
to 3. The suggested seizure active regions are helpful to neurolo-
gists for seizure diagnosis and possible invasive treatments later.

Fig. S1 displays frequencies of the features in the top five
important ones via the size of the nodes, and a connection
network where an edge between two nodes means the two
appeared in the top five features for a patient. It shows that
the SCICA features (the local variance and variance ratio) were
among the most important five features, except for Patients 6, 12
and 21. Two of the three patients were among the most difficult
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cases as conveyed in Table III. For Patient 6, the SCICA regions
estimated by the top 5 SCICs were almost non-overlapping,
which made spatially constrain the true region difficult. For
patient 12, whose seizure events happened more frequently, the
non-seizure periods more often fell into the pre-ictal and after-
ictal states, which caused the SPEC being the lowest among the
24 patients. In addition, the seizure related waveforms showed
less low frequency activities for patients 12 and 16, made their
seizure waveforms less distinguishable in terms of energy. In-
deed, the dominate feature for these two patients were the spikes
occurred at the right paramedian region. Our analysis of the
CHB-MIT data suggested that the classification performance
was significantly benefited from the waveform features if the
seizure period showed less low frequency oscillation.

The connection network in Fig. S1 shows that the 34 features
could be divided into five groups, including the two SCICA
features and the four OMP features. The local variance ob-
tained by SCICA was the most important, appeared 18 times
among the 24 patients. For the OMP features, the strength
type and the sharp/spike features were more prominent than
the frequency type and the SWC waveform, respectively. For
the patients in CHB-MIT dataset, it was found that the left
brain region showed more seizure onset. In the meanwhile, the
left waveform features were more closely connected, showed a
greater connectivity.

VIII. CONCLUSION

Due to the existence of noise and artifacts in the EEG data,
finding ways to enhance the signal to noise ratio offers a viable
approach in training better algorithms for automatic seizure de-
tection. In this work, we propose informative feature extraction
via (i) the SCICA algorithm that also removes the artifacts,
(ii) the sparse waveform representation that utilizes the neu-
rologists’ knowledge to scan for seizure onset waveforms, and
(iii) adaptive feature aggregation via the multivariate change
point detection for feature aggregation in the time domain lead-
ing to enhanced signal to noise ratio in the extracted features.

Compared with the existing studies, an attractive aspect of
our proposal is that it can achieve high detection accuracy
with small training samples in the context of the few-shot
learning. On the benchmark CHB-MIT dataset, we achieved
high sensitivity and accuracy with only 5% of the data for
training. Another attraction is that the procedure is built on
interpretable features with strong neurological meanings, which
would make it more acceptable to medical practitioners to assist
their diagnosis by providing seizure onset alerts with the seizure
specific waveforms and onset regions.

In this study, only sharp/spike and sharp wave complex wave-
forms are modeled in the wave-from basis functions. One can
add more easily confused non-seizure waveforms, such as the
vertex and the k-complex, to reduce the FAR of the algorithm.
Another possible future direction is to generalize the patient
specific few-shot learning to generalized detection that can
transfer the features and waveform features among patients for
better diagnosis. Models commonly used in transfer learning or
domain generalization can be introduced to construct such label
free global detection procedure.
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