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31 Abstract

Although air pollution is caused by emission of pollutants to the atmosphere, the ob-
served pollution levels are confounded by meteorological conditions, which largely determine
the dispersion of the pollutants. Hence, effective air-quality management requires statistical
39 measures that are immune to meteorological confounding and reflect changes in pollutant
41 concentrations accurately and objectively. Motivated by the task of assessing changes in the
43 underlying emission in a region near Beijing, we propose a spatial and temporal adjustment
45 approach to remove meteorological confounding. The adjusted average pollutant concentra-
47 tion over space and time can capture changes in the underlying emission by controlling the
meteorological variation. Estimation of the adjusted average is proposed together with theo-
retical and numerical analysis. We apply the approach to conducting air-quality assessments
52 in the Beijing region, which reveals some intriguing patterns and trends that are useful for

54 air-quality management.

60 math.scichina.com/english


郑翔宇
This is an English translation of “Zhang, S., Chen, S. X., Guo, B., Wang, H. and Lin, W. (2020), Regional air-quality assessment that adjusts for meteorological confounding, Science China, Mathematics (in Chinese) 50(4), 527-558. https://doi.org/10.1360/SCM-2019-0368”


oNOYTULT D WN =

SCIENCE CHINA Mathematics

Key words: Air-quality assessment; Meteorological confounding; Nonparametric regression;

Spatio-temporal adjustment; Treatment effect.

1 Introduction

China has experienced severe air pollution as it rapidly industrializes in the last two decades. The
cause of the air pollution is due to a steady increase in the emission of pollutants as the country
becomes a global manufacturing hub. While this enormous increase has propelled a spectacular
economic growth, it has also led to widespread air pollution in a substantial part of the country.
The region around Beijing is the most affected. The primary air pollutants in Chinese cities are
particulate matters PMy5 and PM;q [Zhang et al. (2012); Guo et al. (2014)], which represent
airborne particles with aerodynamic diameters less than 2.5um and 10um, respectively. In recent
years, the ground-level ozone (O3) has been on the rise in China [Chen et al. (2018)].

The key in improving air quality is to reduce emissions, which requires a timely and accurate
account of emission. Emission inventory is a commonly used tool for emission measurement
which collects industrial data and downscales them to a finer resolution [Kuykendal (2017)]. This
inventory is usually at yearly or smaller temporal frequencies and is subject to measurement and
reporting errors. In China, although there are quite a number of emission inventories, they are
typically three or four years behind and are not generally available.

This paper proposes using hourly air-quality data for emission quantification. An immediate
challenge is the fact that the observed pollutant concentrations are confounded by meteorological
conditions, for instance by the wind direction and speed and the relative humidity as demonstrated
in Liang et al. (2015) and Finazzi et al. (2013). The meteorological confounding to the air pollution
is similar to that in observational studies [Rosenbaum (2002); Qin (2017)] where the bias due to

pre-treatment covariates needs to be adjusted in the evaluation of treatment effects. However, our
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setting differs from observational studies where covariates follow the same baseline distribution
[Huang et al. (2008) and Qin (2017)]. In our study, the baseline covariate distribution should
be constructed properly by considering meteorological variations. Another major difference from
the existing treatment effect literature is that there is a lack of random treatment assignment for
applying the propensity-based approach, since the treatment variable associated with air-quality
management is year and thus is fixed.

We propose a meteorological adjustment approach to removing weather confounding from the
observed concentration. The adjustment is carried out both temporally and spatially to provide
temporally and spatially comparable means and quantiles regarding the pollutant concentration at
a time horizon. The adjusted means at different years can be compared to gain information about
whether there is a reduction in the emission. Temporally meteorological adjustment can also
be conducted via the trend analysis as proposed in Thompson et al. (2001). The trend
analysis is included as a special case in the proposed adjustment framework, which
corresponds to linear regression. The other one was the three-year moving average
method advocated by US Environmental Protection Agency (EPA). An advantage
of the proposed adjustment is that it allows a general form of regression models.
Moreover, it takes into account spatial variations in temporal adjustment.

The paper is structured as follows. Section 2 describes the study region, the data that motivate
our study, and models accounting for meteorological confounding. Section 3 outlines the spatial
and temporal adjustment approach and its ability in gauging the underlying emission. Nonpara-
metric estimators of the adjusted regional air-quality measures and their theoretical properties
are given in Section 4. The variance estimation and hypothesis testing procedures are provided
in Section 5. Section 6 demonstrates the proposed approach by empirically assessing air quality
around Beijing. We defer technical conditions, proofs of theoretical results, simulation studies,

and additional empirical results to the supplementary information (SI).
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2 Study region, data and models

China established an air-quality monitoring network in January 2013 in 74 cities with 496 Guokong
(nationally controlled) monitoring sites, which was extended to 1438 monitoring sites in January
2015 in 338 cities. These data are generally of high quality as shown in Liang et al. (2016) which
cross-compared PMs 5 data from the US diplomatic posts in five Chinese cities with the neighboring
Guokong sites. The US Embassy in Beijing started to report hourly PMs 5 concentrations from
April 2008. As a part of the national network, Beijing Municipal Environmental Monitoring Center
(BMEMC) administrates a monitoring network that consists of 35 air-quality monitoring sites,
which collects hourly concentrations of PMsy 5 and five other pollutants: PM;,, sulfur dioxide
(SO,), nitrogen dioxide (NO;), carbon monoxide (CO), and ozone (O3). The US Embassy
measures only PMs 5. Instead of the calendar year, we consider using the seasonal year which runs
from March to February the following year that covers a set of four seasons from spring to winter.
We focus on the North China Plain (NCP) portion of Beijing as shown in Figure 1, which
occupies a land area of 5180km? from 116.0°E to 116.8°E in longitude and from 39.5°N to 40.2°N in
latitude. The study region has 28 monitoring sites including the US Embassy site, which encloses
the urban core of Beijing confined by the Sixth-Ring Road plus the southern area between the
Sixth-Ring Road and the border with Hebei Province. The “Southern Area” has 3 sites, while the
area with the other 25 sites is termed as “Central Area”. Hebei Province is known for having the
worst air quality in China due to its enormous iron and steel consumptions together with other high
emission industries. Including “Southern Area” serves to understand pollution transportation.
To adjust for meteorological confounding, we use data at 11 weather stations of the Central
Meteorological Agency (CMA) in the study region. The locations of weather stations are marked
in Figure 1. The meteorological variables contain hourly measurements of the air temperature, the
air pressure, the relative humidity, the dew point temperature, the wind direction, the cumulative

wind speed, and the cumulative precipitation. The wind direction is an un-ordered discrete
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variable having 5 categories: northwest (NW), northeast (NE), southeast (SE), south-
west (SW), and calm and variable (CV). According to the Magnus formula [Alduchov
and Eskridge (1996)], the dew point temperature can be mathematically expressed
by the relative humidity and the air temperature via a known nonlinear function.
Hence, any two of the three variables can determine the third one. To reduce the
dimensionality of covariates, we would like to drop one variable. Since the relative
humidity is bounded within values between [0, 1], including it in nonparametric re-
gression will create the so-called boundary bias [see Page 202 in Fan and Yao (2003)].
To avoid the boundary issue, we drop the relative humidity in the analysis.

Suppose there are L air-quality monitoring sites in the study region R, and S meteorological
sites whose locations are collected in YW. At an air-quality monitoring site s, let Y;;(s) be the
concentration of a pollutant at hour ¢ of season j in year ¢, where j = 1,--- , 4 for spring, summer,
fall, and winter, respectively, and X;;(s) be a 6-dimensional vector of meteorological variables,
which consist of the air pressure, the air temperature, the dew point temperature, the wind
direction, the cumulative wind speed under a wind direction, and the cumulative precipitation,
from a weather station which is the closest to the air-quality monitoring site s.

Let U;;i(s) be the level of emission which is regarded as latent as economic statistics are
compiled at much coarser frequencies, which prevents a timely emission inventory. Nevertheless,
an underlying model that describes the relationship between Y;;;(s) and {X;;:(s)",U;ji(s)}" is

Yije(s) = m{Xij(s), Uije(s)} + €iju(s), (2.1)
fort =1,...,n;;, where m;{X;;1(s),U;;i(s)} = E{Yi;:(8)|Xiji(s),Uije(8)}, and €;;.(s) are residuals,
and n;; is the number of hourly observations in season j and year ¢.

AsU,j(s) is latent, we take the expectation on both sides of (2.1) conditioning on the observed

weather covariates X ;;.(s), which gives rise to

Yijr(8) = mi{Xiji(s), 8} + 01 {Xju(s), s}eiju(s), (2.2)
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where mg;(x,8) = E{Y;;:(s)|Xi;e(s) = x}, o7;(x,8) = Var{Yi;:(s)|Xj:(s) = x} and e;;,(s) are stan-
dardized residuals. Moreover, by taking the conditional expectation of the right hand
side in (2.1) given X,;(s), we can obtain another formula for m;;(z,s) as m;;(z,s) =
E[m;{z,U;;:(s)}|X;:(s) = z], which is essentially determined by the conditional distri-
bution of U,j;(s) given X,;;(s). Model (2.2) is the model that we will use for inference. It should
be noted that the yearly index ¢ and site index s appear in the regression function m;;(x,s) as
U,;:(s)’s distribution may change yearly and spatially.

Let X0 = {Xje(s1)", ..., Xije(s)"}" and e;r = {e;e(81), ..., €ie(sL)}", where L is the num-
ber of air-quality monitoring sites. Then X;;; and e;;; are 6L- and L-dimensional, respec-
tively, and collect the meteorological variables and standardized residuals of all the
sites in the region. We assume the multivariate time series {X;;;},*; and {e;;};.*; are tempo-
rally stationary and weakly dependent satisfying the a-mixing condition (see the SI for details),
while leaving the spatial dependence unspecified to allow generality.

To better discuss the combined effects of emission and weather, we can assume an additive

structure to m;{X(s),U(s)} so that
m;{X (s),U(s)} = 1 {X(s)} +m;2{U(s)} + m;3{X(s),Ul(s)}, (2.3)
where the main effects and the interaction are homogeneous with respect to the year and location,
but are seasonally specific. The corresponding version for the observed data is
mij(x,8) =11 (x) + Bl o{Uij(s) X ije(s) = o] + E[mya{z. Uij(s)HXije(s) =] (2.4)
Both (2.3) and (2.4) serve to untangle the emission effect in the next section.
For our purpose, there is no need to build an elaborate parametric version of (2.2). It is also
not necessary to include the temporal lagged or the spatial neighbors’ responses. This is because

the aim of the study is in assessing the pollutant concentration rather than predicting it. For the

purpose of assessment, the nonparametric model (2.2) would be sufficient.
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3 Spatially and temporally adjusted measures

We propose a spatial and temporal adjustment approach to account for meteorological confounding
in statistical measures like the means or the quantiles under Model (2.2). This is motivated by
the practice in China and other countries where the averaged pollutant concentration over a time
horizon is used as measures of air quality. Thompson et al. (2001) considered a trend analysis
under linear regression models in the context of ground ozone pollution. We will show that the
adjustment offered by the trend analysis can be viewed as a special case of our proposed approach.

Ordinarily, the mean of Yj;(s) is E{Y;;:(s)} = E[E{Y};1(s)|X:(s)}] = E[m;{X;:(s),s}]. The

key is which probability density is used in the last expectation. A generic form for the mean is

B{Yiul)} = [ ms(a.5)5, (2. 5)da. (31)
where f;(z,s) denotes a generic density for X;;;(s) in season j at site s. Different forms of f;(z, s)
lead to different measures as shown below.

Let f;;(z,s) be the density of X,;:(s) for season j of year i at site s. If one chooses f;(z,s) =
fij(x,s), the mean in (3.1) is denoted as u?j (s). The commonly used air-quality measure is the
simple average Y;;(s) = ni_jl 24 Yii(s). By the law of large numbers for weakly dependent
processes, Y;;(8) EA 11;(s) as ng; — oo. While pf;(s) and Y;;(s) measure the pollution exposure for
the health purpose, they are confounded by weather conditions of different years and locations.

Another version of f;(x,s) is offered by averaging { faj(x,s)}fil for season j over A; years.
Specifically, let f;(z,s) = A]-’l Zfil faj(z,s), which defines the temporal baseline weather condi-

tion. Choosing f;(z,s) = f;(z,s) in (3.1), we arrive at

fij(s) = /mij(w,s)f,j(a:,s)dx = Aj_1 i/mij(x,s)faj(a:,s)dx. (3.2)

The terms [ my;(,s)fo;(x,8)dz for a # i are counter-factuals [Rosenbaum and Rubin (1983)],
which provide the potential averages under other years’ weather but with year i’s pollution-weather

mechanism m;;(x,s). We call fi;;(s) the temporally adjusted average.
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The {fiq; (s)}.2, are comparable over different years as they are formulated under the temporal

baseline f;(z,s). Specifically, the difference

(s) = fisls) = [ i@, 9){ (@)~ f(a.))do

measures the amount of the weather confounding in year i, and

fisls) = us(s) = [ (@) = mas(2.5)} £z, 5)da
measures the temporal treatment effect due to different emission levels between years ¢ and k.

Thompson et al. (2001) considered a trend analysis in the linear regression model to
gain information on the trend of the ground level ozone pollution. The trend analysis
can be included in our proposed framework under the linear regression setting. To
appreciate this, suppose the regression function m,;(z,s) is linear such that

Yiji(s) = aij(8) + BY(8) X sje(s) + €iju(s), (3-3)
where Xijt(s) are temporally centered covariates over A; years. Then, it is readily
shown that [i;;(s) = «;;j(s) due to temporal centering of covariates, which was not
explicitly stated in Thompson et al. (2001). Moreover, «;;(s) can be used for spatio-
temporal comparison, and «;;(s) = p;;(s), the spatially and temporally adjusted aver-
age which we will define below. It should be noted that our proposed adjustments by
fi;;(s) and 4;;(s) allow more general regression models with linear regression employed
by the trend analysis as a special case.

The temporally adjusted means fi;;(s) are not comparable spatially for {[Laj(sl)}fil and
{fta; (32)};4i1 at two different sites s; and s, since the two sites can bear different weather dis-
tributions. In the following, we takes into account spatial variations into temporal adjustment.
As indicated earlier, the study region R has S meteorological sites whose locations are collected in
W. We can define the spatial and temporal baseline as a weighted version of f;(z,s).

Specifically, let p(s) be a probability density function over the study region. We can
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construct a weighted spatio-temporal weather baseline as

- / Jy(es)pls)ds

Under the fixed design sampling over space, if we select p(s) as the uniformly dis-

tributed density over the meteorological sites, we obtain

=51 Z fi(z,s). (3.4)
s'ew
We call f ;(z) the spatio-temporal weather baseline over R for season j. In the follow-

ing, we will use this unweighted baseline f;(z) to simplify the analysis. Using f;(z)

in (3.4), we arrive at the spatially and temporally adjusted average:

e /mwxs (x)de = S A ZZ/mwxsfa]xs) (3.5)

s’'eW a=1
where those terms with a # i or 8/ # s are spatial and temporal counter-factuals.

We now outline the benefits of the spatial and temporal adjustment under the additive regres-

sion framework (2.3) and (2.4). Define
i / 3@ @)da. is) = [ Elisa{U(o)} Xis(s) = ol (@)de and
nlfF(8) = [ Blinyale. Uss(s)HXouls) = 211 (@)

From (3.5), pij(s) = pi" + pli(s) 4+ pl/P(s). It is noted that the meteorological effect ), due
to the spatial and temporal adjustment, is the same for all the years and locations at a given
season j. However, the emission and the interaction effects 1/ (s) and p/ ¥ (s) can vary yearly and
spatially as the distribution of U;;:(s) can differ in years and sites at season j.

Hence, the yearly difference in two consecutive years at season j is

pis(8) — ptio1,5(8) = pi5(8) — iy (s) + pif P (s) — Y i(s).

Consider the yearly change related to the emission

nb(s) = i (s) = [ [ o) o (uslo) — gissw sk} s (o)duds, (30

where g;;(u, s|z) is the conditional density of U;;(s) given X;;/(s) = x. Similarly, the yearly
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change related to the interaction is

pif o (s) — milt,(s) = //mj,3($7u){9ij(u73|$) — gi1(u,s|2)} f () dudz. (3.7)

Both yearly changes in (3.6) and (3.7) are dependent on g;;(u,s|x) — gi—1;(u,s|x), the yearly
change in the conditional densities. This is only possible with the employment of the spatio-
temporal baseline weather condition f;(z). Without the baseline, we can not attribute the yearly
differences to that in the emission as it may be due to yearly change in the meteorological condition.

The same analysis can be made when we compare y;;(s1) and p;;(s2) at two locations, and
we can attribute the difference as the difference in the emission profiles at two locations since the
meteorological variables have been standardized spatially.

With the spatially and temporally adjusted measure j;;(s), we can construct the average

pollutant concentration in an area 4. The average pollution over A is

pij(A) = |A[™ Z 115(8), (3.8)
seA
where |A| denotes the number of air-quality monitoring sites in 4. This version of the regional

air-quality measure /;;(.A) is a simple average of ji;;(s) over air-quality monitoring sites
in A, corresponding to the design commonly practiced in China’s air-quality man-
agement. It may be viewed as conditioning on the locations of the monitoring sites,
which mirrors the fix design survey sampling approach. In practice, the distribution
of the monitoring sites may not be evenly distributed with certain area (for instance
north of Beijing) having a higher density of the sites relative to another region (south
of Beijing). The region with less number of monitoring sites will encounter higher
variation, as compared to a region with more sites, while other things being equal.
To counter the uneven site distributions, we can introduce a weight function w4(s)

to attain a weighted version of the regional mean:

i (A) = AT pij(s)wals)ds,
scA

10
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where w4(s) may re-allocate weights to attain spatial balance. For ease of expedition,

we will consider (3.8) for y;;(.A) in both theoretical and empirical studies.

4 Estimation and theoretical properties

A key step in constructing estimators for 1;;(s) in (3.5) and p;;(\A) in (3.8) is to estimate m;;(z, s).
In this paper, we adopt the nonparametric kernel method [Hardle (1990); Fan and Yao (2003)] for
estimating the regression function m;(z, s).

We partition X ;;,(s) = {Z;;1(s)", Wi;e(8)}" so that W;;,(s) is the categorical wind direction and
Z,j+(s) contains the remaining continuous covariates of d-dimension. Let K(-) be a d-dimensional

symmetric kernel function (see the SI for details). Define
Kp(z) = (hhy - -ha) ' K(21/ I, .. 2/ ha),

where z = (21,...,24)", and H = (hy,...,hy)" is a vector of smoothing bandwidths. The kernel
estimator [Fan and Yao (2003)] of m;;(x,s) using data of season j of year i at site s under wind

direction w is

iy Ka{z = Ziji(s)}Yiju(8) [{Wiju(s) = w}

mii(z,w;8) = e : (4.1)
! =1 Kaf{z — Ziju(8) H{Wij(s) = w}
where n;; is the sample size, and (-) is the indicator function, and W;j;(s) = 1,...,5 correspond

to wind directions CV, NE, NW, SE, and SW.

The smoothing bandwidths are chosen based on the cross-validation method [Héardle (1990);
Fan and Yao (2003)] for each given wind direction. In some seasons when the sample size under
a wind direction was small, they were merged with data of another direction that had the similar
effect on the pollution. For instance, the three pollution-enhancing wind directions SW, CV and
SE can be combined, so are the two pollution-reducing directions NW and NE. It is noted that
the targets of inference are about 4;;(s) and p;;(.A) which are integrated versions of m;;(z,s). As

shown in Theorems 1 and 2, estimators of p;;(s) and p;;(A) enjoy the root-n convergence rate.

11
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This means they are less sensitive to the smoothing bandwidths than the estimators 7m;;(z, s).
For any = (27, w)", let F;(z) be the empirical distribution function corresponding to the

distribution F,(z) with f;(z) as the density. F;(z) could be obtained based on A; years’ data

at all sites for season j. According to the law of large numbers, there is no need to explicitly

construct F;(z) and the proposed estimator of y;;(s) is

fui;(s /mZJ x,8)d (x)

Znaj Z Z ZZ Mij{Zaji(8'), w, s I{W,:(8') = w}, (4.2)
a=1 w=18eW a=1 t=1

where 1;;(z, s) is given in (4.1). The regional average p;;(.A) is estimated by

A (A) = [ATY (). (4.3)
secA
We can extend the above framework to meteorologically adjusted distribution of the pollutant,

which can produce adjusted quantiles to provide information about extreme levels of concentra-
tions. Similar to the adjusted average in (3.5), we define the adjusted distribution function for

season j of year 7 at site s as

Gi;(y,s Z/ iy, slz,w) f (2, w)dz,

where Fj;(y,slz,w) = P{Yiji(s) < y|Z;j(s) = z,W;;(s) = w} is the conditional distribution.

Similar to (4.2), the estimator of Gij (y,8) is

Aj naj

Gii(y,s) an Z Z ZZ 1,81 Zaju(8), W T{W,;:(s') = w}, (4.4)

w=1s8eW a=1 t=1

where

. YK /{Z Z1(8) y R {Yije(8) — yHA{Wij(s) = w}
Fij(y,slz,w) = D U Ky {z — Ziji(8) M {Wi(s) = w)

is the kernel estimator of Fj;(y,s|z,w). Here Ry, (y) = foy/ho k(u)du is the integration of the

univariate kernel k(-) and hq is the smoothing bandwidth. For any ¢ € (0, 1), the adjusted g-th

percentile is estimated by C?i_jl(q, s), the inverse of the estimated adjusted distribution function.

12
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We present asymptotic properties of estimators fi;;(s) and f;;(A) in the rest of this section.
To simplify the presentation, we consider the case where the covariates in X, (s) are continuous,
which essentially considers adjusted averages at each wind direction. The overall results for (4.2)

and (4.3) can be obtained by combining the results of all wind directions. Under such arrangement,
i Kz — Xiji(s) }Yij(s)
e KH{-’v mt(é’)}

-1

i (s / iy (@, 8)dF (2 an Zzzmw{xm ).

a=18'cW t=1
We first introduce some notations. Recall that X;;; = {X,;:(s1)",...,X;;:(sz)"}" and

mij(.’l,',S) = and

eijt = {€ijt(81),...,€i;0(s0)}". Similarly, define U,;; = {U;;t(s1)",...,U;jt(sz)"}". Under the
temporal stationarity assumptions of X,;; and e;;; (see the SI for details), define ¢;; ;v (z,2';8,5’)
as the joint density of X;;:(s) and X+ (8"), p(|t — t'|;s,8") = E{eijt(s)eijuv (8)|Fi;} and

Chrin jta—t2 (81, 853 81, 82) = Covlmy, j{ X ajr, (81), 81}, Mg { X ajts (83), 82}

The assumptions needed for the theorems in this section along with their proofs are given in
the SI. The major ones are for a given pair of i and j: (i) the emission {U,j;};%, are identically
distributed; (ii) the weather variables {X;;;};; and the standardized residuals {e;;; }; %, are both
temporally strictly stationary and a-mixing, but not necessarily spatially stationarity to allow

more flexible spatial dependence. Under regularity conditions, we can define

i5,k\&1,T2;81,8
Yij (81, 82) = Z (|k]; 81,82 // 0ij(Z1, 51 alj(xz,SQ)f?'j(ﬁf ;1);.4(;2 Z)Z)dF,j(xl)dFj(xQ),
i ) 1] )

k=—o00

-2 2
)‘1122 3(81732 A E § § : 21127jk 81732731732)

a=1 s sh,eW k=—o0

and their corresponding regional versions

Yi(AB) = A TBIT DT vii(s1.s2) and N (A B) = [ATUBITT Y A i(s1,82).

s1€A,82€B s1€A,82€B

Theorem 1. Under Assumptions 1 — 9 given in the SI, as n;; — oo,
. d . . d .
Vg {fiij(8) — pij(8)} = N(0,57,(s,8)) and \/ng; {ji;(A) — pi;(A)} = N(0,57,(A, A)),

13

math.scichina.com/english



oNOYTULT D WN =

SCIENCE CHINA Mathematics Page 14 of 48

where 57,(5,8) = 7ij(8,8) + Niij(s,8) and 67,(A, A) = 735 (A, A) + Nii j (A, A).

We note that the bias commonly associated with the kernel estimation vanishes in Theorem 1
due to the under-smoothing entailed under Assumption 8 as elaborated in the SI.

To compare the adjusted averages between two years i; and i5 or between two different regions
A and B, we need to derive the asymptotic distributions of f;,;(A) — fu;,;(A) and f1;;(A) — fu;;(B),
respectively. The following theorem provides the needed results. Define

¢i1i2,j(31732) = )\ilil,j(31732) + )\igig,j(slasQ) - >\i1i2,j(31>32) - )\igil,j(31732> and

Pinia,j (A, B) = |A]7 B~ Z Diviz,(S1,82).

s1€A,82€B

Theorem 2. Under Assumptions 1 — 9 in the SI, (i) for iy # iy, as ni j,Ni,; — 00,
i L ftin (A) = i (A} = Lo (A) = i (Y] N(0,62,, 5(A)),
where 62, J(A) =30 %ipi (A A) + b1y i (A, A); and (i) for ANB =0, as ny; — oo,
i (A) = i (B)} = {pig (A) = iy (B)}] 5 N(0,5%(A - B)),
where 5§j(A —B) = 5% (A, A) — 2&%(A, B) + &Ej(B, B) with 5% (A, B) = 7v;(A,B) + Xii i (A, B).

The asymptotic normality in Theorem 2 allows us to assess the statistical significances in

spatial and temporal differences of the adjusted averages in the empirical study in Section 6.

5 Variance estimation and hypothesis testing

Since the asymptotic variance in Theorem 2 is quite involved, we propose a bootstrap procedure

to obtain their estimation. To begin with, it may be shown that as n;; — oo,
. —1/2
fiiy(8) = piy(8) = Tiga(8) + Tiza(s) + op(n"?),

where the two leading terms that determine the asymptotic variance are

13(8) = [ (s (2.8) — mi@.)}dF, (@) and
14
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Ta(s) = [ my(o.0)d{F, (o) — F@)}

Ay
=572 D

s’'eWw a=1 t=1

-1

Aj
naj | D nay mij{Xajt(S'%S}—Afl/mij(xjs)dFaj(w,S') 7
a=1

Naj

where F;(z) and F,;(z,s’) are the distributions matched to f;(z) and f,;(z,s’), respectively.

The forms of T} 1 (s) and T;; 2(s) suggest a bootstrap strategy that combines the temporal block
bootstrap [Carlstein (1986)] on meteorological data with the wild bootstrap [Liu (1988); Hérdle
and Mammen (1993)] that resamples the residuals of the regression model (2.2). In order to
keep the spatial dependence in the residuals, we resample estimators of residual vectors {e;;; };- -
An underlying reason for separating the temporal and spatial bootstrap is that the temporal
dependence has negligible contributions to the variance of Tj;;(s) due to the whitening effect of
the kernel smoothing which retains the leading order term as shown in Kreiss et al. (2008).

The temporal dependence in T;;-(s) is handled by the temporal block bootstrap method.
To this end, we combine meteorological data from all sites to form the time series [X;; =
{Xije(s1)", ., Xije(sp)™}", t = 1,...,ny;] in season j and year i. Define By = (Xj;,..., Xj)", ...,
B = (X3 g Xy, ) Brig—irz = (X i - X X)) " o By = (X

XT

G- X5 )" as aseries of circular moving blocks [Davison and Hinkley (1997)] with length [,

which makes every observation have the same chance to be selected in resampled data. We choose
[ = 12 (hours) based on experience with the data. For the b-th replication, we randomly sample
n,;/l blocks from {B;},”; with replacement and combine them to obtain a resampled weather

={X:%(s1)",..., X (s) "}, t = 1,...,ny] for season j and year i.

: *b
series [X! i i

iJt

To generate bootstrap samples of the response variables Y%, (s), we still need to resample the

ijt
standardized residuals, whose core idea is the wild bootstrap or the regression bootstrap advocated
by Liu (1988) and Kreiss et al. (2008). Given the estimated regression function 7;;{X;;:(s),s} in

(4.1), the conditional variance o7;{X;:(s),8} can be estimated by applying the kernel smoothing
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approach on €;,(s) = [Yi;i(s) — my;{Xij(s),8}]?, so that for z = (2", w)",
2 Kz = Zigu(s)},(8) [{Wije(s) = w}

m] ~H{Z Ziji(s) HA{Wij(s) = w}
Here the bandwidths are selected afresh by applying the cross-validation method. This leads to

o7z, 8) = (5.1)

the estimators of standardized residuals
eije(8) = €ije(8)/0ij{Xije(s), 8} (5.2)
and éijt = {éijt(sl)y ey éijt(SL)}T. Let
Ny Nij ”ZJ
t=1 t=1

We generate resamples of the standardized residual by Af]bt b L(O, fiij), which together with the

resampled weather process lead to the resampled responses

Yit(s) = mi{X7j,(8), 8} + 05, {X 7}, (s), 8}el7,(s), (5.3)
fort=1,---,n;. We re—compute the adjusted average for each bootstrap replication by
Aj Naj

ﬂ:}b Znaj Z Z sz a]t » W S}I{W;]bt( ') =w} and

w=1s'eW a=1 t=1
A = LA S i)
scA
The bootstrap standard deviations of fi;;(s), fi;(A), fti,;(A) — fui,;(A) and f1;;(A) — f1;;(B) can
be obtained via Monte-Carlo simulation, which are denoted as G,;(s, ), 7i;(A, A), 7ii, ;(A) and
3ij (A — B), respectively. These standard errors together with the spatial and temporal differences
in the adjusted averages are used for assessing changes in regional air quality.

For testing the yearly difference hypotheses Hy : pii,;(A) = pi,;(A) versus Hy : pu,;(A) >
(<)pi;(A), we use the test statistic {fii,;(A) — fii,;(A)}/Fii, ;(A). For detecting any regional
difference, we consider testing Hy : p1;;(A) = p;;(B) versus Hy : p1;;(A) > (<)pi(B) with the test
statistic {/1;;(A) — f1;;(B)}/&:;(A — B). Both statistics asymptotically follow the standard normal

distribution by Theorems 1 and 2, which allows obtaining the p-values for statistical significance.
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6 Application to Beijing’s air pollution data

6.1 Model diagnostics

We conducted diagnostics to the nonparametric model (2.2) by first carrying out the nonparametric
kernel estimation for the regression function given in (4.1). As a first diagnostic check, Table S1
of the SI provides the fitted R? for six pollutants from Spring 2013 to Winter 2016. It shows that
the R%s were mostly above 70%, indicating reasonable fit of Model (2.2).

An important notion in modeling dependence of spatial data is the semi-variogram
[Cressie (1993)], which we will outline in the context of analyzing the standardized
residual process. Under the temporal stationarity assumption, the semi-variogram
function for the standardized residual process {e;;;(s) : s € R} at hour ¢ of year ¢ and
season j is

Yi5(8,8") = 27'E[{eie(s) — €iju(s)}?], for any s,5' € R. (6.1)
The process {e;;:(s) : s € R} is said to be spatially stationary if 7;;(s,s’) = 7;;(s —s’) and
isotropic if 7;;(s,s") = v;;(||s — §'||) by a slight abuse of notation, where ||-| denotes the
Euclidean norm. The semi-variogram for other processes such as the PM,; and SO,
processes can be similarly defined.

Specifically, 7;;(0) is called the nugget effect, which denotes the variability that
cannot be explained by the spatial correlation. The nugget effect is caused by mea-
surement errors, and requires densely populated sites in order to be estimated accu-
rately. Under the isotropic assumption, as h increases, v;;(h) would gradually increase
initially and then level off beyond a distance, commonly called the range. The value
of the semi-variogram at the range is called the sill. Any two sites with a distance
larger than the range would have no spatial dependence.

Under the temporal stationarity assumption, the semi-variograms between any
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two sites s;, and s;, is estimated by, in the case of the standardized residual process,

. 1 . .
Yig(llsn = sll) = 5 — > {ein(sn) — éip(s,)}?, for il =1,... L, (6.2)

which are represented by dots in Figures 2 and S1.

Motivated by Jun and Stein (2004), to gain information on the large scale spatial dependence,
we display in Figure S1 of the SI the semi-variograms for the raw pollution readings, the fitted
values by nonparametric regression, and the estimated residuals €;,(s) = Y;;i(s) — m;;{X;(s), s}
for PMsy 5, SO2, NO5 and the 8-hour O3 for the summers and winters of 2015 and 2016, respectively.

Figure S1 shows that the semi-variograms for the raw PMs 5 and SO, displayed stronger non-
stationarity and longer-range dependence, while those for the raw NOy and O3 were relatively
flatter even at larger distances. The latter revealed weaker spatial dependence for NO, and Og
due to their shorter life expectancy as both gases are more chemically reactive, and hence cannot
travel afar. The figure also shows that the semi-variograms of the raw pollutants were closely
imitated by those of the fitted values, which indicated reasonable fitting performance of the kernel
regression approach from the aspect of spatial dependence. The semi-variograms for the estimated
residuals show much weaker dependence, which demonstrates the ability of the regression models
in picking up the large scale trend and variation in observed concentrations.

Figure 2 presents the locally estimated scatterplot smoothing (LOESS) estimates [Cleve-
land and Devlin (1988)] of semi-variograms, which essentially smooth 4;;(h) with respect to the
distance h for PMy 5, SO,, NOy and 8-hour O3 (12 noon to 7 pm). These LOESS fitted curves
show there was no much spatial dependence beyond 20 kms in majority of the plots as the semi-
variograms ceased to increase significantly after 20 kms, indicating Model (2.2) captures the main
aspects of the spatial dependence. Figure S2 of the SI provides the autoregression functions of the
standardized residuals of PM, 5 at three monitoring sites and the corresponding long-run covari-
ance function, showing that summer tended to have stronger temporal dependence than that of

the other three seasons which is likely induced by Beijing’s rather static weather pattern in sum-
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mer. These semi-variograms in Figure 2 had comparable shapes, magnitudes and nugget effects,
indicating the innovation processes {e;;:(s) : s € R} for the four pollutants share some common

features of spatial dependence.

6.2 Concentration maps

We adopt the adjustment method to obtain fi;;(s), the estimated adjusted averages at all 28
monitoring sites for each season and year. Then we conduct the spatial kernel smoothing of the
adjusted averages f1;;(s) over the study region with a bivariate productive Gaussian kernel and a
smoothing bandwidth h = 0.15 degrees in latitude and longitude. These give rise to the seasonal
concentration maps of the air pollutants for each season and year. Figure 3 display those of PM, 5
and NO, from 2013 to 2016, while those SOy and 8-hour O3 are provided in Figures S3 in the SI.

Figures 3 and S3 show that PMs 5, SO, and NO, concentrations share a similar seasonal pattern
of high winter and low summer with those of fall and spring situated in between. The 8-hour Oj
has a reversed seasonality such that the summer and spring were the high seasons, and winter
and fall were the low seasons. This is because the photo-chemical process that governs the ground
level ozone generation requires ultra-violet light (u.v.) from the sun, which is the reason for the
consideration of 8-hour O3 from 12 noon to 7 pm, the period when the O3 concentration tended
to be the highest.

On top of these seasonal patterns, PM, 5 exhibited large spatial variations with the southern
part of Beijing having much higher concentrations than the other areas, especially in the severely
polluted winter season. The spatial variations of other three pollutants were much less than that
of PMy 5. Figure 3 displays elevated circular ridges of NOs over the city center, which were the
most evident in 2014 and still quite noticeable in 2016. This was largely due to the motor vehicle
emissions of NO and NOs, especially under traffic congestion that Beijing is famous for. The peaks

of the circular ridges were situated in the east part of the city between the Third and Fourth Ring
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Roads, which coincides with the most congested area of the capital. The circular shape of the
NO, distribution reflected the fact that NO5 can not be transported afar due to its much shorter
life expectancy as it is highly chemically reactive.

A close inspection of the ozone concentration map in Figure S3 shows the low concentration
basin was in the area where NO, was high. The basin was the most apparent in the summer and
spring of 2014. This trade-off between NOy and O3 was a result of a chemical reaction equation
NO3+ 0O, g NO+Oj3. As emissions from motor vehicles are primarily NO (and CO), the equation
implies that direct emission of NO consumes O3 for the generation of NO,, which explains the
trade-off. Of course, the inverse reaction is also valid under the condition of the ultra-violet (u.v.)
radiation, which explains why the O3 level is the highest in the afternoon and in summer.

Figure 3 reveals temporal reductions of PMy 5 from 2014 to 2015 especially in summer and
fall. However, it is hard to detect noticeable improvement from 2015 to 2016. In contrast, the
figure demonstrates clear reductions in SO, from 2014 to 2016 in all seasons. Confirmations of the
reduction being statistically significant will be made in the following subsection when we carry
out inference for air-quality measures. In contrast, the improvement, if any, in NOy and Oz in
Figures 3 and S3 was rather unclear, and needs formal confirmation via statistical testing, again

in the following subsection.

6.3 Regional air-quality assessment

In this section, we utilize the tests outlined in Section 5 to conduct assessments on the yearly and
regional differences in air pollution levels. We focus on the temporal differences p;,;(A) — i, j(A)
for i5 = 4; + 1, and the spatial differences p;;(A) — p;;(B) for A being the Southern and B the
Central areas, respectively.

Figure 4 displays the seasonal average concentrations in the Central and Southern areas for

PMs 5, SO, NOy and 8-hour O3 from 2013 to 2016. It shows that the average seasonal PM, 5
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levels were persistently higher than 35ug/m?®, the Interim target-1 limit set by the World Health
Organization (WHO). The NOy average concentrations in the Central area were also consistently
over the WHO limit of 40pg/m?® set in all seasons, while SO and Oz were relatively better with
SO, exceeding the WHO limit only in the winter and O3 in the summer of the last two years. The
Southern area had much higher PMs 5, but less NOy than the Central area. That the Southern
area has higher PM, 5 reflected the transported fine particulate matters from the heavy industrial
Hebei Province. Meanwhile, the high NO, in the Central area was attributed to much elevated
emission from motor vehicles due to congested traffic, since more than 70% of the population in
the capital are resided in the Central area.

To formally check whether there were significant differences between the two areas, Table 1
gives Southern minus Central averages along with their standard errors and p-values for testing
against the Southern being higher than the Central for PMs5, SOy, and 8-hour O3, and the
opposite for NOy. Numerical figures in the table reveal southern-high, central-low pattern for
SO, and 8-hour O3, which are not that visible in Figure 4. The table reports the p-values in
four categories: those larger than 0.01, those in (107?,0.01] marked with one x, (10716 1077]
attracting two xs, and those smaller than 1076 with three *s. Our deliberate using rather smaller
p-value ranges was to account for multiplicity from testing hypotheses over the 16 seasons and 4
pollutants. If counted by the number of p-values with two or three xs out of the total of 16, the
Southern-Central difference was the most significant for NOy (15 out 16), followed by PMy 5 (11
out of 16) and O3 (9 out of 16). SO, exhibited the least difference with 3 out of 16 having no x,
which were the highest among the four pollutants.

To gain information on yearly changes in air quality, we took differences in the adjusted
averages between consecutive years and then employed the proposed spatio-temporal bootstrap
approach to obtain standard errors and p-values for significances for four pollutants, which are

displayed in Figure 5. It is observed that the temporal differences were much less significant than
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the regional differences as reported in Table 1. Indeed, there were only 2 significant yearly changes
out of 16 for PMs 5 in Central, and 7 out of 16 for the Southern area, and those significant p-values
were largely at one % level indicating rather weak change if at all. Among the four pollutants,
SO, was the most significant in both areas, followed by 8-hour O3 and NO,. PM, 5 had the least
changes in the last four years among the four pollutants.

The reduction in SO5 in Years 2014 and 2015 was very substantial and encouraging, and was a
bright spot for Beijing’s air-quality management in the last four years. Comparing with SO,, the
other three pollutants’ performances in the last four years were rather lackluster. It is clear that
2015 was the year that had the most significant improvement as reflected by significant reductions
in PMs 5, SOg and NOs. This was largely linked to the economic slowing down in the last economic
cycle. Although PM, 5 was significantly reduced in 2015 at the 1% significance level, there was
no improvement in 2016 but an insignificant increase in the Central area. This was worrying
as it showed the reduction in the fine particular matters was in a stalemate in 2016. The same
stalemate was also observed in NOy and O3 in 2016.

The above assessments indicated the challenge faced by Beijing’s air-quality management.
While the SO5 level has been reduced significantly, it has not translated to a continued PMs 5
reduction at the time. Our analysis suggests an urgent need to reduce the NOy level caused by
the motor vehicle emission in order to find a new driving force for PM; 5’s decline. Cutting back
NO, will also reduce the level of O3 which has been on a rising curve in the broader Beijing-
Tianjin-Hebei region as shown in Chen et al. (2018).

We also compared the proposed adjustment method with two existing methods.
One was the trend analysis method given in Thompson et al. (2001) which we have
outlined in Section 3, and the other was the three-year moving average method
advocated by US Environmental Protection Agency (EPA). Details and the problems

with the moving average method had been documented in Chen et al. (2018). Figure
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6 displays the average concentrations of PM,5; and SO, using the three methods for
Central and Southern areas. The plots for NO, and 8-hour Oj are provided in Figure
S4 in the SI. Both figures show substantial differences between the proposed approach
and the other two methods especially in winter and fall seasons for PM, 5, SO, and
NO,. Table 2 reports numerical average differences between the proposed approach
and the other two methods, respectively. It reveals that the average differences in
winter were more than 6pug/m?® and 10pug/m?® for PM, 5 in the two areas, respectively,
which showed substantial amounts of annual improvement in these four pollutants in

the last a few winters in Beijing.

7 Discussion

We have proposed a spatial and temporal adjustment method for objectively assessing air quality
in a region that removes meteorological confounding and produces spatially and temporally com-
parable air-quality estimates. The method is able to quantify underlying changes in the emission,
which would be much more time consuming to measure based on the emission inventory method.
We have established the theoretical properties of the air-quality measures, and have
utilized them for a comprehensive evaluation on air quality in a region around Bei-
jing by analyzing the pattern and trend for the major air pollutants. The theoretical
justification along with the simulation experiments provides the necessary guarantee
for the performance of the adjustment method.

The study reported in this paper focuses on the region of Beijing, where the
air-quality monitoring sites and the meteorological stations are relatively close to
each other. If they are far apart, we can use the spatial kriging method to impute

meteorological variables at each air-quality site for the purpose of estimating the
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regression function. However, the meteorological stations are much denser than the
Guokong (nationally controlled) air-quality monitoring sites in most cities in China,
so this is less of an issue. One may also wonder whether the methodology still works
if the air-quality monitoring sites are not close to each other. Generally speaking, as
long as the meteorological covariates from the sites share common domains to allow
the definition of the spatial and temporal baseline density f;(z), the adjustment
method can be carried out with guaranteed performance given the site configuration.
Our experience suggests that the proposed approach can be used to assess air quality
in quite a large region, for instance the North China Plain (NCP), since the NCP
shares common meteorological characteristics.

Our assessment reveals significant reduction in SOy while the improvements in PMs, 5 and
NOs were much subdued up to early 2017, the end time of the data. There has been an upward
trend for the ground level ozone that deserves attention. Although the implementation of the
air-quality assessment method is demonstrated using nonparametric regression in the study, a

suitable parametric or semiparametric regression model can be used as well.
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22 Figure 1: Locations of air-quality monitoring sites (red circles) and meteorological stations (blue trian-
23 gles) in the North China Plain portion of Beijing. Insert: the study region within the North China Plain
24 and mountain ranges to the west and north.
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Figure 3: Seasonal concentration maps of the spatio-temporal adjusted averaged concentration (j1g/m3)
of PMa s (Panel A) and NOy (Panel B) in the urban area of Beijing from Year 2013 to Year 2016. The
number above each plot displays the regional adjusted average in Beijing while the number inside the

parentheses is the standard error. The smoothing bandwidth used for generating the map is 0.15.
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Figure 4: Seasonally adjusted averages (j1g/m?) with the bars indicating the 95% confidence intervals.
The averages for a region are obtained by averaging the adjusted averages at all sites in the region. The
blue dashed line in each figure suggests the standard indicated by the WHQO, which are 35pg/m3 (Interim

target-1) for PMys, 20pg/m3, 40ug/m? and 100ug/m? for SOz, NOy and 8-hour Os, respectively.
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Table 1: Regional differences (standard errors, jig/m?) of seasonal and annual adjusted averages of

PMs 5, SOy, NOy and 8-hour Os between Southern and Central areas (Southern - Central).

Pollutant Season 2013 2014 2015 2016
Spring 9.5(1.2)** 11.9(1.1)*** 11.7(1.2)*** 8.2(1.6)*
Summer 6.9(1.3)* -3.7(1.2)* 5.1(0.8)** 1.8(1.0)
PMs 5 Fall 19.1(2.1)*** 26.8(2.4)*** 17.2(3.3)* 17.7(1.8)***
Winter 36.0(1.7)*** 50.8(1.8)*** 66.8(2.2)*** 45.8(2.1)***
Average  17.9(0.8)*** 21.4(0.9)*** 25.2(1.1)*** 18.4(0.8)***
Spring 5.1(0.5)*** 3.8(0.5)** 3.2(0.3)*** 1.1(0.3)*
Summer -2.3(0.3)** 5.8(0.4)*** -0.2(0.1) 0.1(0.1)
SO4 Fall 3.5(0.6)** -0.9(0.2)* -1.3(0.3)* 2.6(0.2)***
Winter 0.5(0.6) 4.0(0.5)*** 2.9(0.4)*** 5.7(0.3)***
Average 1.7(0.3)** 3.2(0.2)*** 1.2(0.2)** 2.4(0.1)***
Spring  -15.0(0.5)***  -14.6(0.7)*** -10.2(0.6)*** -3.4(0.6)**
Summer -20.8(0.4)*** -21.8(0.4)*** -16.2(0.3)***  -14.2(0.4)***
NO, Fall -9.3(0.7)**  -14.9(0.7)**  -14.1(0.7)***  -10.0(0.7)***
Winter -3.2(0.5)** 4.1(0.4)*** 1.0(0.5) -4.0(0.5)**
Average -12.1(0.3)*** -11.8(0.3)***  -9.9(0.3)*** 7.9(0.3)***
Spring 25.8(1.5)*** 18.9(1.0)*** 2.5(0.9)* 22.9(1.1)***
Summer -13.8(1.6)*** 6.9(1.7)* 6.4(1.2)* 16.2(1.5)***
8-hour O3 Fall 4.6(1.2)* 2.9(1.0)* 6.9(1.3)* 10.9(1.1)***
Winter -4.5(0.5)*** -0.7(0.6) 9.5(0.7)*** 4.9(0.6)***
Average 3.0(0.6)* 7.0(0.6)*** 6.3(0.6)*** 13.7(0.6)***

The number of * represents the level of significance for testing the increase or decrease of the annual change
between two consecutive years ( *: 1079 < p-value< 1072; **: 1079 < p-value< 10716; ***; p-value< 10716).

Table 2: The average absolute differences (standard errors, jig/m3) between the moving average, trend
analysis and our proposed method for different pollutants of Central and Southern areas in each season.

Season Method Central Southern
PM2_5 SOQ N02 8- hOllI‘ 03 PM2_5 802 N02 8-hour 03
Soriny Moving Average 43(1.0) 4.0(0.4) 18(0 1) 41(08) 2.8(1.3) 4.2(0.4) 3.6(0.5) 6.3(1.2)
PIE " Tyend Analysis 1.0(0.9) 0.4(0.3) 0.8(0.4) 4.6(0.9) 2.5(1.8) 0.7(0.5) 1.6(0.6) 4.6(1.4)
Summey MOVIng Average 3.3(0.8) 17(0.1) 1.8(0.3) 7.8(1.2)  3.1(0.9) 22(02) L1(0.3) 129(1)
Trend Analysis 3.8(0.8) 0.1(0.2) 0.9(0.3) 3.0(1.3)  3.4(12) 0.1(0.2) 0.6(0.3) 1.4(3.2)
oy Moving Average 5.5(15) 25(0.2) 19(05) 16(0.8)  6.8(23) 3.4(03) 23(06) 3.5(12)
Trend Analysis 2.0(1.3) 0.6(0.3) 0.9(0.5) 2.0(1.0) 5.4(2.4) 0.6(0.6) 2.1(0.7) 3.3(1.5)
Winter Moving Average 6.0(1.2) 7.8(0.4) 2.4(0.4) 1.7(0.3) 10.5(2.2) 6.1(0.6) 3.5(0.6) 3.1(0.6)
Trend Analysis 6.9(1.3) 1.7(0.3) 4.5(0.5) 2.4(0.4) 11.3(1.9) 2.1(0.4) 3.3(0.6)  2.0(0.6)
Average Moving Average 4.8(0.6) 4.0(0.2) 2.0(0.2) 3.8(0.4) 5.8(0.9) 4.0(0.3) 2.6(0.3) 6.5(0.6)
Trend Analysis 3.4(0.6) 0.7(0.1) 1.3(0.2) 3.0(0.4)  5.6(1.0) 0.9(0.2) 1.9(0.3) 2.8(1.4)
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Supporting Information for Regional
Air-Quality Assessment That Adjusts for

Meteorological Confounding

by Shuyi Zhang, Song Xi Chen*, Bin Guo, Hengfang Wang, Wei Lin

Appendix A: Assumptions

We outline the conditions assumed in our study here. A strictly stationary process &; is said to
be a-mixing if its a-mixing coefficients ag (k) satisfies limy_,o ag(k) = 0, where the definition of
ag(k) can be found in Bosq (1998). To derive the asymptotic properties in Section 4, we impose

the following regularity conditions.

Assumption 1. Forany j = 1,...,4, ¢ =1,...,A; and s € R, the latent emission variables

{Uii(8)}22, are identically distributed.

Assumption 2. For the meteorological covariates X ,j,(s), we consider the following assumptions.
(i) For any j = 1,...,4 and i = 1,...,A;, [Xijy = {Xie(81)7, X ie(82)7, -+, Xije(82) T}
s temporally strictly stationary and temporally a-mizing where there exist a; > 0 and as > 1
such that the a-mizing coefficient of {Xii )2, satisfies ax (k) < a k= for any k > 0; For any
j=1,....4,i=1,..., A and s € R, (i) fij(®,s) is v-th order continuously differentiable

everywhere in x. Moreover, there exist ci,co > 0 such that ¢ < infa:Esupp{fij(w’s)} fij(®,s) <

SUD . supp{ fi; (ws)} i3 (Z:8) < c2, where supp{ fij(x,s)} is the support of fij(x,s) which is a closed
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set; (iii) The joint probability density function g;;r(x,z';8,8") is v-th order continuously differ-
entiable everywhere in x and x'. Moreover, for any r = 0,1,...,0—1, ¢ = 1,...,d and
z. 2 € RY n; ' Y00 0 qe(@,a’;s,8)/0x) = O(1) as nyy — oo; () The conditional den-
sity Xiji(s) given X ;v (8") exists and is finite. Under the strict stationarity condition, we de-
note the conditional density by p;j—v(x|a';s,8"). Assume piji—v(x|2';8,8") is v-th order continu-

ously differentiable everywhere in x in x'. Moreover, for any r = 0,1,...,v —1, ¢ = 1,...,d

and z,x' € RY, ni_j1 w2 O k(e sls') /0x, = O(1) as ny; — oo; (v) Define || Xl =

SUDgey k=1,....d | Xijen(s)]], where || Xijer(8)], = {E|Xijt,k(s)|7"}1/’" for any k = 1,...,d. Assume
that there exists a positive integer r > 2 such that || X5 ||, < +oo; (vi) For anyr =0,1,...,0—1,

q=1,...,d and x,x' € R?, 0"pi;r(z|2’; 8]8) /0 — 0" fi(x,8)/0x] as k — +oc.

Assumption 3. Forany j=1,...,4,i=1,...,A; and s € R, we assume (i) m;;(x,s) is v-th
order continuously differentiable everywhere inx; (i) foranya=1,...,A;,8 e W, r=0,1,...,v

and q=1,....d, [ fo;(x,8)0 my (z,8)/0x;dx erists and is finite.

For any j = 1,...,4and i = 1,..., A, define F;;; = 0(X;;;,0 < 7 < t) = 0{X;;-(8),s €
R,0 <7 <t}and F;; = 0(X;js,t > 0) = 0{X,js(s),s € R,t > 0} as the o-algebras generated by

{Xijt,0 <7 <t} and {X,j;,t > 0}, respectively.
Assumption 4. For any iy # is, F;,; and Fi,; are independent.

Assumption 5. For any j = 1,...,4, a,i = 1,..., A;, 81,8, € W and 81,82 € R, we assume

Zzo:_oo| z%‘,j,k(slbsé;slvs?)‘ < +00.

Assumption 6. For the standardized residual e;j1(s), we consider the following assumptions. (i)
Forany j = 1,....,4 and i = 1,...,4;, le;e = {€iji(81),...,eij(s) i is temporally strictly
stationary and temporally c-mizing where there exist by > 0 and by > 1 such that the a-mizing
coefficient of {e;ji}1", satisfies ae(k) < bik™2 for any k > 0; (ii) E(eij|Fije) = 0; (i) For any

5,8 € R, Y15 |plks s, s')] < +o.
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Assumption 7. For the kernel function K(-) in estimating m;;(x,s), we consider the following
assumptions. (i) K(-) is d-dimensional satisfying [ K(uw)du = 1; (i) K () is radially symmetric
such that for any wy = (u1y, - u1g)" and uy = (ugy,--- uza)™ if S0, ui,; = S u3,;, we
have K(uy) = K(uy); (iii) K(-) is of v(v > 2)-th order such that for any | € Z, and r =
(ri,re, -+ ,rq)T € N=4{0,1,...} satisfying Z?Zl r; = 1, we have

—0, ifl<i<o,

// /u’fu’; ) K(uy,ug, ..., ug)durdus . . . dug
#0, ifl=w.

Since K(-) is radially symmetric, we can define its v-th order moment by

/ / /uKul,..., ¢ Ug)duy .. dug ... dug, for any ¢ =1,...,d.

Assumption 8. The bandwidths H = (hy, ..., hq)" satisfies as n;; — oo,
d d d
Z |hq| — O, Nij H hz — +00, Ny H hzv — 0.

Njj (Zfiﬁ ”aj>_1 - Aj_l =0 <Z§=1 h;)'

Assumption 9. Asn;; — oo, sup, ;

Appendix B: Technical details

We consider the case where the covariates in X;;(s) are all continuous. Thus
i Kz — Xiji(s)}Yi(s)
- KH{x - m(S)}

-1

MZ] /mz] z, 3 dF Zna] Z Z Zmlj{Xa]t }

a=1 g€V t=1

and

’ﬁlij ((L', 8) =

B.1. Bias and variance of /i;;(s)

Define the following quantities related to the bias of ji;;(s),

M) (. faj(@,8") 0"m;j(x,8) 0" fij(x, ) .
bija(8imi5) = v'S Z{Z Z() J 8?1:5 o, ZJ ——dx ¢ hy and

s'ew r=1 fZJIL‘S)

d Nij— N ar v—T ! /
) v faj(®,8") 0"mij(,8) 0" pij i (' |; 8]8") v
bz] a(s nz] 'Sn Z {5;\} ; k__zﬂ (T) fij ((II, S) 8$2 8(3321)11—7" . dx hQ’
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The following two quantities are related to the variance of ji;;(s),

ng;—1

_ k
Vij (81, 82, 45) :nijl Z p(|kl; s1,82) ( | |) //UU T1,81)0ij(T2, 82)

k=—n;;+1
fi(@) f(x2)
fij(®1,81) fij (T2, 82)

i Maj—
N k

)\mg<51;327nz]>_n 1S 2A 2 Z Z Z ( _T|L_|) ;Li,j,k(3/178/2;31782)'
aj

s ,shew a=1 k=—ng;+1

d:r1 d$2 and

X Qij,k($17x2§31752)

Theorem 1. Suppose Assumptions 1, 2(ii)(iii)(iv)(v), 3, 4, 6(ii), 7(i)(ii)(iii) and 9 hold. Then
foranyj=1,...,4,i=1,...,A; and s € R, the bias and variance of ji;;(s) are
Bias{u;(s)} = Aj_1 {Z bg,)a(s; ni;) + bz(j)l(s, nl])} {1+0(1)} and
aFi
Var{fi;(s)} = {7ij(s, 8:mi;) + Aii (s, 8:m45) {1 + o(1)},

as n;; — 00, respectively. If Assumption 2(vi) holds besides the above assumptions,

A;
Bias{ji;(s)} = § A7 dabijh(s5mis) o {1+ 0(1)}.
a=1
as n;; — 00, where 6, = I(a # i) + 21 (a = 7). Moreover, in both of the above two cases, we have

Bias{f1;;(s)} = O <ZZ:1 h;) and Var{j;;(s)} = O(ni_jl) as ni; — 0.

Proof. (1.1) Derivation of the bias of [i;;(s).

Deriving the first moment of /i;;(s) can be attributed to calculating that of m;;(X ;v (s),s),
of which the conditional expectation given X,y (s’) should be considered. First, we notice that
under the assumptions in Theorem 1, blj a(s; ni;) = O <Zj:1 hg) and bw a(s; ni;) = O (Zf]lzl hZ).
According to the correlation between X;;:(s) and X ,;+(s'), two scenarios are considered as follows.

Case (1.1.1). If a # i, since F;; and F,; are independent, we have, as n;; — o0,

E[mij{ X ajv(8'),8}] = E(E[mi{ X o (8'), 8} X ajer (8')]) = E[mij{ X aje (s'), 8}]

pulF) 5~ = (v faj(®,8') 0"mi;(x, 8) 0" fij(x, ) v .
T Z {Z (7") fij(x,8)  Ox! Oz dx} hy +o <; hq> _

g=1 r=1

Case (1.1.2). If a = i, X;;(s) and X, (s’) are spatially and temporally correlated. Under
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Assumption 2, it can be derived that as n;; — oo,
E[m,»j{Xijt/ (8"). s} = E(E[m{X v (s'), s} X v (s')]) = E[mi{ X5 (s), s}]

A fij(@,8") 0"my;(x,8) 0" "piji—v (2'|2; 8|8") d
dr » h® 4+ o h,|.
{ZZ( ) flj €T s) ax; a(I;)v—r s q ; q

Aj ;
> Z&jZ@w&mﬂmm—%@zdw+m+m. (A.1)

a=1seWt'=

Moreover, under Assurnptlon 9, as n;; — oo,
-1

According to the results in Cases (1.1.1), (1.1.2) and Equation (A.1), we can obtain Bias{;;(s)} =
A7l {z bV (s:mi;) + b

7 aFi ij,a 15,1

2(vi), Bias{ji;;(s)} = A" Zajl 5.b%0) (s;mi5) +o (Zq ) hZ) by the Stolz-Cesaro Theorem.

ij,a

(s nw)} +o <Zq 1 h;) as n;; — 00. Furthermore, under Assumption

(1.2) Derivation of the variance of [i;;(s).
First note that under the assumptions in Theorem 1, ;;(s, 8;n55) = O(n;;') and Ay (s, 85n45) =

O(nw ). To derive the variance of fi;;(s), we start with the following decomposition,

jis(s) = [ 1,045 (2) = s () + T (8) + Tisals) + T, (A.2)
where
Tiya(6) = / (15(2,8) = ms (2. )}dF s (2), Tijals) = [ mo(e,8)d(Fy(a) - Fyfe)} and
5al6) = [ {i(2.9) = mo(z,9)}d{Fy (o) - Fy(o).
It can be shown that Var{uw( s)} = [Var{T};1(s)} + Var{T};2(s)} + 2Cov{T;;1(s), T3;2(s) }H{1 +
0(1)}. We first deal with Var{T};1(s)}. Since f;;(,s) is a consistent estimator of f;;(x,s), it can

be derived that, as n;; — oo,

Tija(s) = {T1(s) + T (8)H1 + 0p(1)}, (A.3)
where
W 1 & 1
T)(s) = n—ij > [ sy e = Ko} X sfa). ) = my (o 0) fy(w)dr - and
T (s = Z%{th ,8}eiji(s) / mKH{x — Xije(8)} fj(x)dx
By some algebra, we have Var{T P Y(s) =0 <Zq 1h§”) and Var{T i 2 (s)} = vii(8,8;m5){14+0(1)}.
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Then as n;; — oo,
Var{T;;1(8)} = (s, 8;n5) + O(Hi_jl)-

For the second term Tj;5(s) = [ my;(x, s)d{F;(x) — F;(x)}, it can be shown that

Naj

Tyals Z Z Waj me{XaJt ), 8} — A; /mw x,s)dF,j(z,s )] : (A.4)

a=1 s'eWw Naj 43

By deriving E{T};2(s)} and E{T},(s)} respectively, we have as n;; — oo,
Var{Tl-j,g(s)} = )‘ii,j (S,S; Tlm‘) -+ O(n;l)
The covariance of T;;1(s) and T;;2(s) satisfies Cov{T;;1(s), Tij2(8)} = <ZZ:1 h;’). Thus the

variance of fi;;(s) is Var{ji;(s)} = 7i;(s, 8 ni;) + Xiij(s, 8:155) + o(n;;') as ny; — oo, O

B.2. Technical details for Theorem 1

Besides the quantities defined in the main text, we define

i5,k\T1,T2;81,8
%‘j,k(31,82) = p(|k’;81782) // O-’ij(mlasl)o-ij(m2782)f(?i£l< ;1);(;2 Z)Q)dF](ml)dF](mQ)
ij ) ij )

Aggregating 7;; (81, 82) over k, we can obtain 7,;(s1,82) = Z;:O'ioo Vijk (81, 82).

B.2.1. Asymptotic normality of [i;;(s)

Proof. To derive the asymptotic normality of [i;;(s), we still consider the decomposition in (A.2),

(A.3) and (A.4). Notice that T};5(s) = op{T;;1(s) + Tij2(s)}. We re-decompose fi;;(s) by

jii(8) = {1} () + T (s) + T (8) {1 + 0p(1)}, (A.5)

as n;; — 00, where

TV (s) = » /KH{:I: — Xij(8) Y mig{ X i0(8), 8} — mi;(x, 8)] fi((x))dx
T (s) = ni Z laiﬂ' {Xiji(s), steiju(s) KH{; ZxX:)t( o {XW h2)
Y ot=1 A s'EW

Naj

STAT Y — S S X (s )

a#i Maj t=1 s’eW
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It can be easily obtained that Var{ﬂgl)(s)} =0 <n71 S h”) Thus as n;; — oo,

ij 2uq=1"
VST (8) = B{T)(s)}] 5 0.
To obtain the asymptotic property of T ( ), define ¢;;:(8) = ;jt.1(8) + ije2(s) where ¢j01(s) =
oi{ Xiji(s), s}eij(s) [ FHEZ AR (2) and Gjia(s) = STVAT S ey mi{ Xin(s'),8}. Then
T( (s) = ny;' D20 siji(s). Since E(e;ji| Fije) = 0, we have for any ¢; and ¢y, Cov{gijr, (8), Gije, (8)} =
Cov{Sijt; 1(8); Sijts1(8) } +Cov{<iji, 2(8), Sij,,2(8) }. It can be shown that Cov {g;jt, 1(8),ijr,1(8)} =
Yijitr—ts (81, 82). Moreover, we have Cov{c;j, 2(8), Siji, 2(8)} = S‘ZA-_2 Zs; sew Cli ity 1,(81,85:8,8).
Thus the long-run covariance function of {s;;;(s)}. is a ( ) = > e . Cov{sijo(s),siju(s)} =
Vij(8,8)+ST2ATEY N > s syew Cli (81,858, 8). Then by the central limit theorem for weakly

dependent time series [Bosq (1998)], as n;; — oo,

d

VT2 (s) = B{T ()} % N(0,05(s)).

Similarly, it can be shown that, as n;; — 0o,

VST (8) = B{T{ (8)}] 5 N(0.01(s)).
where a( )( ) = S72A;° D i Db oo 28,178,26)/\, Cfi ;1 (81,85;8,8). Since 72-(]3) (s) is independent of
T( )( )—l—T( (s) and Bias{j;;(s)} = O (ijl hg), it can be shown by the Slutsky’s Theorem that

\/n_ij{ﬂij(s) — 11i5(8)} A N(0, w(s s)) as n;; — 0o, where &; (s s) = 75(8,8) + Nij(8,8). O

B.2.2. Asymptotic normality of ji;;(A)

Proof. By (A.5) in the proof of asymptotic normality of f;;(s), as n;; — oo,

> fu(s) Z{ 2(s) + T (s)H1 + 0p(1)},

scA scA
where Ti(jl)(s), Ti(f) (s) and 7;(].3) (s) are defined in (A.5). Since Var{ﬂgl)(s)} =o0 <n._.1 Zgzl h;),

v

Vi | D T (s) — E {Z n@%)}] 50, (A.6)
scA scA

as n;; — oo. Similarly with the proof of Theorem 1, we can obtain that as n;; — oo,

Vi [T (s) —E{ZTZ-(J»Q)(S)}] 4N <o, i Ejj.fk) and (A.7)

scA seA k=—o00
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Vi | DT (s) — E {Z T <s>}] 5N (o, > Eéj’-’fk) 7 (A8)

seA scA k=—o0

2
= e Yiik(81,82) + ST2A Y Y ew Cli (818581, 82) and ) =

2 4-2
STRATEY i D e snea Zs,pséew Cf 1(81,82;81,82). By the Slutsky’s Theorem, as n;; — oo,

Vi [Zﬂz‘j(s) —E{Zﬂzj(s)}] = N(0,755(A)),

seA seA

where =

where 5’%(./4) = Zsl,szeA{Vij('slvs?) + )\“’7]‘(31,32)}. MOI‘GOVGI‘, BlaS{ﬂw<A>} =0 <ZZ:1 hz) as
n;; — o0o. Thus we can directly obtain the asymptotic normality of /i;;(,A) in Theorem 1 by the

continuous mapping theorem. O

B.3. Technical details for Theorem 2

To extend the definition of A, j(51,52), we define ¢, . (81,82) = S ng,SQEW{ i k(81,85 81, 82)
+ 0212 Js k(3,178/2; S1, 82) - Cquig,j,k:(sllvsé; 31752) " 4 O%h,j,k('s/l?sé; 81732)}'

B.3.1. Asymptotic normality of [i;,;(A) — fi;,;(A)

Proof. By (A.5) in the proof of Theorem 1, for any iy # i, as n;; — oo,

> {itias(8) = fiig(8)} = D { TN 1 (8) + T 5(8) = T, () + T () } {1+ 0p(1)},

sc A sc A
where
Nigj
1 1 1 2 2 _
7 () =T (s) — T(s), T2 1(8) = T (s) = STAT it S0 ST iy i {Xiyje(s'), s} and
t=1 s’eW

Ngj

ngzl,y( 1A Z Z Z [ {X 02 (8"), 8} — iy ;1 { X 0ju(8"), 8}].

aiq,io Maj t=1 s’'eW
As shown in (A.6) and (A.8), we have, as n;, j, n;,; — +00,

\/le Z '5211] {Z 7/211] } 50 and

seA scA
d - 3
Vnilj Z Zzllj {Z 7,2113 } - N (07 Z nggl,j7k> ’ (A9>
LscA scA i k=—o00
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where Qf 31 k= = A7 D artivin Dusysaed Py ju(81,82). Similar with (A.7), we have as n;,; — +0o0,
2 2 d — 0
| S - { S m ] (03 00,
seA s€A k=—o00
where Qz(m k= Do sped Yinik(81,82) F AT 4 (bzil,j,k;(sl? S2). By the Slutsky’s Theorem,

N (Z {f1ir(8) — f1i,5(8)} — E | Y {fuirs(8) — ﬂilj(s)}] ) = N (0,67, ;(A),
scA scA
Niyjs Migj — +00, where gy . (A) = Zsl,szeA{%zj(sla32)+¢i2i1,j (s1,82)}. Moreover, Bias{/i;,;(A)—

1211,J

fii(A)} =0 <Zq . hg) as n;,;, Ni,; — +00. Then the asymptotic normality of fi;,;(A) — fi;,;(A)

can be obtained by the continuous mapping theorem. O]

B.3.2. Asymptotic normality of [1;;(A) — /1;;(B)
Proof. For two regions A and B such that ANB = @, let M, = | A|, My = |B| and M = M, + Mo.
Without loss of generality, let A = {s1,--- ,8p,} and B = {Spyy+1, - ,8m}- It can be shown that

) » ) ), T fi(s1)
i) (AT Saaiis) | [ AL, 0 R -
fii;(B) Bl > e i (8) 0 1B|™ 1, A
fiij(Sar)
Similar to the proof in Theorem 1, we have as n;; — 0o,
. d =
v/ Mg (,U,U — [l,”) — N(O, ZU<A U B))
By the continuous mapping theorem, as n;; — oo,
N ~ T T 4 S T
Vg [{i(A), i (B)} — {ii (A), i (B)}'] = N(0,TE; (AU B)IT).
011 012

Let TE;;(AUB)I'™ = . Then we have
021 022

O = (JA| 7111y, 07)Z5 (AU B)(JA]7'1],07)" = 57(A, A),

= (| A1y, 07)Z5 (A U B)(JA|'17,0)" = 67,(A, B),
021 = (0", |B| ™12 (AU B)(0", |B| '1jy)" = 65(B,A) and
B2 = (07, |B| 1) Zi;(A U B)(07, |B|'1]y)" = &7,(8B, B),
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where 17, = (1,1, -+, 1)j4x1. Since 57(B, A) = &(A, B), by the Cramér-Wold Device,
Vi (A) = i (B)} = (i (A) — iy (B)}] % N (0,52 (A - B)),
as n;; — 0o, where 5%(%1 —B) = 6%(«4, A) — 25%(%1, B) + 5%(8, B). O

Appendix C: Simulation results

In this section, we carry out the simulation study which is designed to evaluate the empirical
performance of the proposed estimation of the air quality measures via spatial and temporal
adjustment approach. The simulation setting is constructed to reflect the real data situation in
the study region around Beijing to make the simulation more relevant.

The meteorological data used in the simulation were created by resembling those of the observed
data in the seven winters when the air pollution is the severest in Beijing from 2010 to 2016 over
all the weather stations. We simulated meteorological covariates via the data blocking method.
Two sample sizes T" = 1080, 2160 are considered, respectively. As our focus was in the winter
season, we set the season index j = 4 throughout this section. At a sample size T, the original
meteorological time series {X;4(8)}24 in year i at site s were partitioned into blocks of equal
length [ = 12, from which we sampled 7'/l data blocks independently with replacement with the
equal probability so that the dependence structure of the original time series can be retained.
A simulated meteorological realization of length 7' was obtained by connecting the 7'/l sampled
blocks together, which gives rise to the one simulated meteorological series {X4(s)}]_; in year
1 at site s. The simulated meteorological variables for Years 2010 - 2014 are only used for the
construction of the meteorological baseline, while those for Years 2015 and 2016 are both for the
baseline and generation of the simulated air pollution data.

After simulating the meteorological variables, we generated the PMy 5 data for two winters
(Winters I and II for Year 2015 and 2016, respectively) over all the 28 air quality monitoring sites

as follows. The simulated regression model (2.2) for Winters I and II was the following model
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m{z; B(w,s)} with the wind and site specific coefficients B(w,s) = {fo(w, ), -, Bs(w, s)}":
4
m{z; B(w,s)} = Bo(w,s) + > m"{x,;B(w,s)} with
r=1

m D {x1; B(w,s)} = fi(w, 8)z1 + Bo(w, )77, mP{xa; B(w, )} = Fs(w, 8)ws + fa(w, 8)a3,

m & {zs; B(w,8)} = Ps(w, )3 and m W {zs; B(w,8)} = fs(w, 8) log 4. (A.10)
where x = (21,25, 23,24, w)" denotes a vector of dew point, temperature, pressure, cumulative
wind speed and wind direction. We did not consider the cumulative precipitation as a covariate
as Beijing hardly has precipitation in winter.

The parameter values were assigned based on the empirical observations in the winters of 2015
and 2016 respectively. We first obtained a set of baseline parameters 8*(w, s) by fitting Model
(A.10) with the standardized response and covariates based on the real observations in winter 2015
at six sites: Aotizhongxin, Fangshan, Guanyuan, Shunyi, U.S. Embassy and Yizhuang, respec-
tively, denoted as S = {81, 82, -+ ,86}. These sites offer a good spatial representation of the study
region. To reduce the noise in the estimated parameters and to capture consistent regional trends,
we averaged the estimated parameters over the six sites to attain g*(w) = 671>, s B*(w,s),
which offers the baseline parameters under a wind direction w for the standardized version of
(A.10). Table S2 provides the specific values of 8*(w).

With the baseline parameter f*(w), we attained site-specific parameters 8;(w,s) for Winter
[ by transforming the standardized model with *(w) back to the non-standardized version with
site-specific means and standard deviations of the response and the covariates respectively. Let
Viai(8) = {Dis(8), D%,(8), Tias(8), T,(8), Piat(8), log Cise(8)}" be the vector of the observed data
containing all the continuous covariates in Model (A.10). Let B4(w, s) = {Beo(w, s), B, (w,s)} and
B*(w) = {Bg(w),,é*(w)}. Then Model (A.10) can be re-written as

mia{ Xin(s),8} = Bro{Wia(s), 8} + V5ii(8)Bi{Win(s), s},
where (1 = 2015,k = I) and (i = 2016,k = II) represent Winter I and II for Year 2015 and

2016, respectively. Let p);(s) and u};(s) be the means of V4 (s) and Yiu(s), respectively. The
standard deviation of Yjy(s) is denoted by ¢} (s), while that of the I-th element of Vy(s) is

math.scichina.com/english



oNOYTULT D WN =

SCIENCE CHINA Mathematics Page 42 of 48

denoted by ¢y, ,(s). Let ®jy(s) = diag{e};,(5), #j12(8), -, ¢16(8)} be a diagonal matrix with
diagonal elements ¢}y, (8), P}y 5(8), -+, dl(s). For (i = 2015, k = I), we generated the regression

coefficients B(w, s) as follows,
Bro(w.8) = B3 (w) + i ()/611(8) — {(uli(8)} T (BLi(9)} 18" (w) amd By (w,5) = 8}i(){®1(5)} B (w).

The parameter values B;;(w, s) for Winter II were obtained by perturbing (5;(w, s) for Winter
I with a 7-dimensional Gaussian noise with zero mean and a diagonal covariance matrix with
diagonal elements 5, 2, 0.06, 1, 0.02, 0.5 and 0.1.

In order to simulate the pollution level according to Model (2.2), it remained to specify the
conditional standard deviation function og4(z, s) and the innovation process [exss = {€xat(81), -,
erat(828) } T, for Winters k =I and II. The empirically estimated conditional variances 64(z, 8)
based on the real data in winters 2015 and 2016 were used, respectively, for Winters I and II.
The innovations were generated according to a lst-order vector auto-regressive VAR(1) process
erat = Agerat—1 + ury where Ay is a 28 by 28 matrix and ugs; ~ Nog(0,€Qy). Here, A, and Q. are
empirical estimates by fitting the above VAR(1) model based on estimated standardized residuals
€4t via (5.1) and (5.2) based on the 2015 and 2016 winters data for Winters I and II respectively.

Finally, the simulated PMy 5 Yy (s) for Winter k was obtained by using X ;4(s) via

Yiat(8) = mya{Xise(8), 8} + 0pa{ Xiae(8), s} epar(s), t=1,--- | T, (A.11)
with (i = 2015,k = I) and (¢ = 2016,k = II), respectively, and my4(z,s) = m{z;Br(w,s)} as
specified in (A.10). To avoid negative values in the simulated PMsy 5, we added a floor value to
the simulated responses followed by a division of 3 to make the simulated PMy 5 consistent with
the observed winter level.

The meteorological baseline for simulation was constructed based on the observed meteorolog-
ical data for winter from 2010 to 2016. Hence, the true values of the adjusted averages for a site

s and region A are, respectively,

fira(8 (Z na4> >y imm{xau ),s} and pupa(A) = A7) ua(s)

s’eW a=1 t=1 s€A
Their estimates jig4(s) and fix4(A) based on each simulation can be obtained in the similar way
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as (4.2) and (4.3), respectively. For a given sample size, we replicated the above simulation 500
times. The standard errors (SEs) and root mean squared errors (RMSESs) of the estimates jix4($)
and fig4(A) can be obtained in the standard fashion.

Table S3 reports the RMSEs and SEs of meteorologically adjusted averages at all 28 sites, 5
selected sub-regions and the entire region for two sample sizes 7" = 1080 and 2160 in Winters I
and II, respectively. In the simulation, we divide the Central area into 4 subregions named as the
Northeast, Northwest, Southeast and Southwest areas. To avoid misleading with the Southeast
and Southwest areas, we rename the Southern area by the Far South area in Table S3. It is
observed that for each winter, as the sample size is increased, both RMSEs and SEs are reduced
in all sites and all sub-regions, which confirms the established asymptotic theory in Section 4 in
the main paper. The simulated RMSEs and the SEs were quite small relative to the underlying
level of the simulated adjusted averages, since the 28-site averages were around 155 ug/m?® and 187
ug/m?® in Winters I and II, respectively. The three southern sub-regions (Southeast, Southwest
and Far South) had relatively larger RMSEs than the two northern sub-regions, which largely

reflected the higher PMs 5 concentration in the south of Beijing.
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Table S1: The seasonal and annual fitting R?. Station average R? shows the average of the fitting R?s
of all monitoring sites. Station pooled R? is obtained by pooling the fitted values from the nonparametric
model in all sites and then computing the R? of this pooled data set.

Pollutants Season

Station Average

Station Pooled

2013 2014 2015 2016 2013 2014 2015 2016

Spring 0.82 0.79 0.88 0.86 0.82 0.79 0.88 0.86

PM, Summer  0.72 0.80 0.75 0.77 0.72 0.80 0.75 0.77
: Autumn  0.85 0.78 0.87 0.87 0.85 0.79 0.88 0.87
Winter 0.84 0.74 0.92 0.86 0.84 0.75 0.92 0.87

Spring 0.77 0.76 0.86 0.81 0.77 0.77 0.86 0.82

PM;q Summer  0.64 0.67 0.69 0.68 0.65 0.68 0.69 0.68
Autumn  0.80 0.76 0.86 0.85 0.81 0.76 0.87 0.85

Winter 0.82 0.71 0.91 0.84 0.82 0.72 0.91 0.85

Spring 0.74 0.81 0.87 0.84 0.76 0.82 0.87 0.84

SO, Summer  0.75 0.62 0.65 0.74 0.82 0.72 0.60 0.76
Autumn  0.81 0.70 0.91 0.87 0.83 0.72 0.91 0.89

Winter 0.78 0.67  0.83 0.78 0.79 0.69 0.83 0.78

Spring 0.76 0.76 0.82 0.82 0.79 0.81 0.85 0.84

NO, Summer  0.65 0.55 0.65 0.71 0.76 0.73 0.79 0.80
Autumn  0.82 0.76 0.82 0.83 0.84 0.79 0.84 0.85

Winter 0.82 0.72 0.89 0.85 0.83 0.74 0.90 0.86

Spring 0.78 0.82 0.88 0.86 0.77 0.83 0.88 0.86

o Summer  0.78 0.71 0.74 0.77 0.77 0.71 0.77 0.78
Autumn  0.79 0.75 0.92 0.88 0.79 0.76 0.92 0.88

Winter 0.80 0.72 0.89 0.82 0.80 0.73 0.89 0.83

Spring 0.92 0.89 0.95 0.95 0.94 0.91 0.95 0.95

8-hour Os Summer  0.87 0.73 0.88 0.86 0.89 0.77 0.89 0.88
Autumn  0.86 0.89 0.96 0.94 0.88 0.90 0.96 0.94

Winter 0.90 0.79 0.96 0.90 0.90 0.82 0.96 0.91

Table S2: Baseline parameters obtained by taking average of parameters at six selected sites in
Winter I using the standardized values of PMs 5 and the corresponding predictors.

w (wind direction)  f5(w) Bi(w) Fz(w) B5(w) Pi(w) B5(w) pg(w)
CV 000 117 044 -059 -028 -0.24 0.01
NE 0.0l 120 060 -041 -0.15 -0.26 -0.03
NW 0.00 149 113 023 -0.14 -0.18 -0.23
SE 000 117 060 -0.36 -0.09 -0.35  0.02
SW 000 130 086 -0.36 -0.15 -0.36  0.04
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1

2

3

4

5

6

7

8

9 Table S3: The root mean squared errors (RMSE) and the standard errors (SE) of the adjusted
1(1) averages at 28 sites and 5 sub-regions that mimic those in Beijing for two simulated winters (Winters I
12 and II).

13 Winter I Winter 11

14 RMSE SE RMSE SE

15

16 ) i T 1080 2160 1080 2160 1080 2160 1080 2160
17 Region/Site

18 Whole Region 1.04  0.67 094 0.63 094 0.73 093  0.62
19 Northeast Sub-region 1.09 0.70 0.88 0.57 0.96 0.77 0.93 0.61
20 Dongsi 135 0.95 0.95  0.60 0.93  0.71 091  0.59
21 Dongsihuan .07 0.71 0.87  0.56 118 0.93 110 0.73
22 Nongzhanguan 1.02  0.66 0.86 0.57 1.08  0.94 0.97  0.62
23 Shunyi 110 0.69 1.08  0.69 112 0.82 1.09  0.71
24 U.S. Embassy 126 0.80 0.93  0.58 0.87  0.66 0.87  0.59
25 Northwest Sub-region 0.92  0.61 092  0.61 111 0.96 0.89  0.59
26 Aotizhongxin 117 078 0.91  0.59 091  0.73 0.88  0.57
27 Beibuxinqu 1.06  0.70 101 0.69 147 133 107 071
28 Changping 0.85  0.59 084  0.56 115 0.99 0.73  0.45
29 Guanyuan 097  0.61 0.89  0.58 109 0.89 1.09  0.69
30 Gucheng 1.04  0.68 104  0.67 150 1.34 110 0.77
31 Mentougou 215  1.30 2.01  1.08 104 0.77 0.97  0.64
32 Wanliu 123 085 122 085 1.67 133 143 0.98
33 Xizhimenbei 135  0.98 132 0.94 193 1.50 1.56  1.12
34 Zhiwuyuan .02 0.73 102 0.72 127 0.90 123 0.83
22 Southeast Sub-region 1.19  0.76 0.96 0.64 1.02  0.63 0.96  0.63
37 Qianmen 1.10  0.69 1.0l 0.68 1.16  0.73 110 0.71
38 Tiantan 0.98  0.60 0.93  0.60 0.95  0.69 094  0.62
39 Tongzhou 176  1.31 117 0.83 1.30  0.77 111 0.74
20 Yizhuang 141 085 1.07  0.69 149 1.03 093  0.61
a1 Yongdingmen 118 0.78 1.05  0.71 131 1.06 121 0.79
4 Southwest Sub-region 112 0.71 1.02  0.69 0.98  0.76 0.98  0.66
43 Daxing 155  0.97 119  0.78 149  0.90 1.02  0.67
44 Fangshan 148  0.96 121 0.84 111 0.82 110 0.72
45 Fengtai 115 0.80 115 0.78 1.08  0.77 108 0.71
46 Nansanhuan 134 0.84 118 0.79 135 1.05 131 0.92
47 Wanshouxigong 1.08  0.69 1.04  0.69 117 0.93 116 0.75
48 Yungang 0.94  0.67 0.93  0.64 144 130 1.05  0.71
49 Far South Sub-region 1.57 1.03 1.27  0.86 1.40 0.87 1.26 0.86
50 Liulihe 1.86 130 148  1.00 162  1.23 1.61  1.10
51 Yongledian 173 1.07 160 1.0 1.60  0.97 142 0.96
52 Yufa 149 104 115 0.77 173 1.14 111 0.74
53

54

55

56

57

58

59
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Table S4: Differences (1g/m?, standard errors) of seasonal and annual adjusted averages of PMy s,
S02, NOy and 8-hour Os for two regions.

Pollutant Season Central Southern
2014-2013 2015-2014 2016-2015 2014-2013 2015-2014 2016-2015
Spring 1.8(3.5) -5.9(3.0) -0.5(3.2) 4.2(3.9) -6.0(3.4) -4.0(4.0)
Summer 0.1(2.8) -17.0(2.5)** -1.6(1.9) -10.6(2.7)* -8.1(2.2)* -4.8(2.0)*
PMs 5 Fall 5.8(4.3) -17.2(4.8)* 3.0(4.7) 13.4(5.4)* -26.7(7.4)* 3.5(7.0)
Winter 7.0(3.1) -7.6(3.5) 5.9(4.0) 21.8(4.0)* 8.4(4.7) -15.0(4.9)*
Average 3.7(1.7) -11.9(1.8)** 1.7(1.8) 7.2(2.0)* -8.1(2.4)* -5.1(2.4)
Spring -5.1(1.3)* -10.8(1.0)*** -0.4(0.7) -6.3(1.4)* -11.3(1.0)*** -2.5(0.8)*
Summer  -5.7(0.4)*** -1.2(0.2)* -1.2(0.2)** 2.4(0.5)* -7.2(0.4)*** -0.9(0.2)*
SO, Fall S7.7(0.7)*** -3.0(0.5)** -0.8(0.5) -12.2(0.9)*** -3.4(0.5)** 3.1(0.6)*
Winter  -11.9(0.9)***  -9.1(0.7)***  -4.8(0.5)***  -8.4(1.0)***  -10.2(0.8)*** -2.0(0.7)*
Average  -7.6(0.4)*** -6.0(0.3)***  -1.79(0.3)**  -6.1(0.5)*** -8.0(0.4)*** -0.6(0.3)
Spring 4.0(1.2)* -6.2(1.2)* 0.8(1.1) 4.4(1.3)* -1.7(1.1) 7.6(1.0)**
Summer -2.4(0.7)* -5.0(0.7)** -0.3(0.7) -3.4(0.6)* 0.7(0.6) 1.7(0.7)*
NO, Fall 3.9(1.4)* -8.1(1.5)* 1.4(1.5) -1.8(1.4) -7.3(1.5)* 5.5(1.6)*
Winter 2.1(1.1) -0.7(1.1) 3.2(1.3)* 9.4(1.1)** -3.8(1.0)* -1.8(1.2)
Average 1.9(0.6)* -5.0(0.6)** 1.3(0.6) 2.2(0.6)* -3.0(0.6)* 3.2(0.6)*
Spring 3.8(2.4) 0.6(2.5) -0.7(2.6) -3.1(3.0) -15.8(2.8)* 19.7(2.8)**
Summer 16.0(2.9)* 1.2(3.0) -5.0(3.1) 36.7(3.0)*** 0.8(3.2) 4.9(3.4)
8-hour O3 Fall -2.2(2.4) 6.4(2.6)* -1.8(2.7) -3.9(2.8) 10.4(2.9)* 2.2(3.2)
Winter 3.2(0.9)* 1.7(1.0) 6.4(1.0)** 7.0(1.0)** 11.9(1.2)*** 1.8(1.4)
Average 5.2(1.1)* 2.5(1.2) -0.3(1.2) 9.2(1.3)** 1.8(1.3) 7.1(1.4)"

The number of * indicates the level of significance in the yearly increase/decrease as specified in the caption of Table 1.
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Figure S1: Semi-variograms of the observations (black), fitted values (red) and residuals (blue) of
the nonparametric model of PMg 5, SO2, NO2 and 8-hour Og in summer (Panel A) and winter (Panel
B) of 2015. The dots represent the empirical estimation of semi-variograms. The lines are the smoothed
curves of the empirical semi-variograms by the nonparametric LOESS method.
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Figure S2: Auto-correlation functions of the standardized residuals of PMs 5 at sites Aotizhongxin,
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Fengtai and Shunyi in four seasons from 2014 to 2016. The number in the title of each figure provides the
value of the spectral density function at zero times 27, which is equal to the sum of all auto-covariance
functions and hence exhibits long-range temporal dependence of the standardized residuals in each season.
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Figure S3: Seasonal concentration maps of the spatio-temporal adjusted average of SOy (Panel A)
and 8-hour O3 (Panel B) concentration (ug/m?) in the area located in the North China Plain of Beijing
from Year 2013 to Year 2016. The number above each plot displays the regional adjusted average in
Beijing while the number inside the parentheses is the standard error. The smoothing bandwidth used
for generating the map is 0.15.
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Figure S4: Seasonally adjusted averages by using our proposed method, three years’ moving average
and the trend analysis for NOs and 8-hour Og in the Central and Southern areas.
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