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Abstract

Although air pollution is caused by emission of pollutants to the atmosphere, the ob-

served pollution levels are confounded by meteorological conditions, which largely determine

the dispersion of the pollutants. Hence, effective air-quality management requires statistical

measures that are immune to meteorological confounding and reflect changes in pollutant

concentrations accurately and objectively. Motivated by the task of assessing changes in the

underlying emission in a region near Beijing, we propose a spatial and temporal adjustment

approach to remove meteorological confounding. The adjusted average pollutant concentra-

tion over space and time can capture changes in the underlying emission by controlling the

meteorological variation. Estimation of the adjusted average is proposed together with theo-

retical and numerical analysis. We apply the approach to conducting air-quality assessments

in the Beijing region, which reveals some intriguing patterns and trends that are useful for

air-quality management.
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1 Introduction

China has experienced severe air pollution as it rapidly industrializes in the last two decades. The

cause of the air pollution is due to a steady increase in the emission of pollutants as the country

becomes a global manufacturing hub. While this enormous increase has propelled a spectacular

economic growth, it has also led to widespread air pollution in a substantial part of the country.

The region around Beijing is the most affected. The primary air pollutants in Chinese cities are

particulate matters PM2.5 and PM10 [Zhang et al. (2012); Guo et al. (2014)], which represent

airborne particles with aerodynamic diameters less than 2.5μm and 10μm, respectively. In recent

years, the ground-level ozone (O3) has been on the rise in China [Chen et al. (2018)].

The key in improving air quality is to reduce emissions, which requires a timely and accurate

account of emission. Emission inventory is a commonly used tool for emission measurement

which collects industrial data and downscales them to a finer resolution [Kuykendal (2017)]. This

inventory is usually at yearly or smaller temporal frequencies and is subject to measurement and

reporting errors. In China, although there are quite a number of emission inventories, they are

typically three or four years behind and are not generally available.

This paper proposes using hourly air-quality data for emission quantification. An immediate

challenge is the fact that the observed pollutant concentrations are confounded by meteorological

conditions, for instance by the wind direction and speed and the relative humidity as demonstrated

in Liang et al. (2015) and Finazzi et al. (2013). The meteorological confounding to the air pollution

is similar to that in observational studies [Rosenbaum (2002); Qin (2017)] where the bias due to

pre-treatment covariates needs to be adjusted in the evaluation of treatment effects. However, our
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setting differs from observational studies where covariates follow the same baseline distribution

[Huang et al. (2008) and Qin (2017)]. In our study, the baseline covariate distribution should

be constructed properly by considering meteorological variations. Another major difference from

the existing treatment effect literature is that there is a lack of random treatment assignment for

applying the propensity-based approach, since the treatment variable associated with air-quality

management is year and thus is fixed.

We propose a meteorological adjustment approach to removing weather confounding from the

observed concentration. The adjustment is carried out both temporally and spatially to provide

temporally and spatially comparable means and quantiles regarding the pollutant concentration at

a time horizon. The adjusted means at different years can be compared to gain information about

whether there is a reduction in the emission. Temporally meteorological adjustment can also

be conducted via the trend analysis as proposed in Thompson et al. (2001). The trend

analysis is included as a special case in the proposed adjustment framework, which

corresponds to linear regression. The other one was the three-year moving average

method advocated by US Environmental Protection Agency (EPA). An advantage

of the proposed adjustment is that it allows a general form of regression models.

Moreover, it takes into account spatial variations in temporal adjustment.

The paper is structured as follows. Section 2 describes the study region, the data that motivate

our study, and models accounting for meteorological confounding. Section 3 outlines the spatial

and temporal adjustment approach and its ability in gauging the underlying emission. Nonpara-

metric estimators of the adjusted regional air-quality measures and their theoretical properties

are given in Section 4. The variance estimation and hypothesis testing procedures are provided

in Section 5. Section 6 demonstrates the proposed approach by empirically assessing air quality

around Beijing. We defer technical conditions, proofs of theoretical results, simulation studies,

and additional empirical results to the supplementary information (SI).
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2 Study region, data and models

China established an air-quality monitoring network in January 2013 in 74 cities with 496 Guokong

(nationally controlled) monitoring sites, which was extended to 1438 monitoring sites in January

2015 in 338 cities. These data are generally of high quality as shown in Liang et al. (2016) which

cross-compared PM2.5 data from the US diplomatic posts in five Chinese cities with the neighboring

Guokong sites. The US Embassy in Beijing started to report hourly PM2.5 concentrations from

April 2008. As a part of the national network, Beijing Municipal Environmental Monitoring Center

(BMEMC) administrates a monitoring network that consists of 35 air-quality monitoring sites,

which collects hourly concentrations of PM2.5 and five other pollutants: PM10, sulfur dioxide

(SO2), nitrogen dioxide (NO2), carbon monoxide (CO), and ozone (O3). The US Embassy

measures only PM2.5. Instead of the calendar year, we consider using the seasonal year which runs

from March to February the following year that covers a set of four seasons from spring to winter.

We focus on the North China Plain (NCP) portion of Beijing as shown in Figure 1, which

occupies a land area of 5180km2 from 116.0◦E to 116.8◦E in longitude and from 39.5◦N to 40.2◦N in

latitude. The study region has 28 monitoring sites including the US Embassy site, which encloses

the urban core of Beijing confined by the Sixth-Ring Road plus the southern area between the

Sixth-Ring Road and the border with Hebei Province. The “Southern Area” has 3 sites, while the

area with the other 25 sites is termed as “Central Area”. Hebei Province is known for having the

worst air quality in China due to its enormous iron and steel consumptions together with other high

emission industries. Including “Southern Area” serves to understand pollution transportation.

To adjust for meteorological confounding, we use data at 11 weather stations of the Central

Meteorological Agency (CMA) in the study region. The locations of weather stations are marked

in Figure 1. The meteorological variables contain hourly measurements of the air temperature, the

air pressure, the relative humidity, the dew point temperature, the wind direction, the cumulative

wind speed, and the cumulative precipitation. The wind direction is an un-ordered discrete
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variable having 5 categories: northwest (NW), northeast (NE), southeast (SE), south-

west (SW), and calm and variable (CV). According to the Magnus formula [Alduchov

and Eskridge (1996)], the dew point temperature can be mathematically expressed

by the relative humidity and the air temperature via a known nonlinear function.

Hence, any two of the three variables can determine the third one. To reduce the

dimensionality of covariates, we would like to drop one variable. Since the relative

humidity is bounded within values between [0, 1], including it in nonparametric re-

gression will create the so-called boundary bias [see Page 202 in Fan and Yao (2003)].

To avoid the boundary issue, we drop the relative humidity in the analysis.

Suppose there are L air-quality monitoring sites in the study region R, and S meteorological

sites whose locations are collected in W . At an air-quality monitoring site sss, let Yijt(sss) be the

concentration of a pollutant at hour t of season j in year i, where j = 1, · · · , 4 for spring, summer,

fall, and winter, respectively, and XXX ijt(sss) be a 6-dimensional vector of meteorological variables,

which consist of the air pressure, the air temperature, the dew point temperature, the wind

direction, the cumulative wind speed under a wind direction, and the cumulative precipitation,

from a weather station which is the closest to the air-quality monitoring site sss.

Let UUU ijt(sss) be the level of emission which is regarded as latent as economic statistics are

compiled at much coarser frequencies, which prevents a timely emission inventory. Nevertheless,

an underlying model that describes the relationship between Yijt(sss) and {XXX ijt(sss)
T,UUU ijt(sss)}T is

Yijt(sss) = m̃j{XXX ijt(sss),UUU ijt(sss)}+ ε̃ijt(sss), (2.1)

for t = 1, . . . , nij, where m̃j{XXX ijt(sss),UUU ijt(sss)} = E{Yijt(sss)|XXX ijt(sss),UUU ijt(sss)}, and ε̃ijt(sss) are residuals,

and nij is the number of hourly observations in season j and year i.

As UUU ijt(sss) is latent, we take the expectation on both sides of (2.1) conditioning on the observed

weather covariates XXX ijt(sss), which gives rise to

Yijt(sss) = mij{XXX ijt(sss), sss}+ σij{XXX ijt(sss), sss}eijt(sss), (2.2)
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where mij(xxx,sss) = E{Yijt(sss)|XXX ijt(sss) = xxx}, σ2
ij(xxx,sss) = Var{Yijt(sss)|XXX ijt(sss) = x} and eijt(sss) are stan-

dardized residuals. Moreover, by taking the conditional expectation of the right hand

side in (2.1) given XXX ijt(sss), we can obtain another formula for mij(xxx,sss) as mij(xxx,sss) =

E[m̃j{xxx,UUU ijt(sss)}|XXX ijt(sss) = xxx], which is essentially determined by the conditional distri-

bution of UUU ijt(sss) given XXX ijt(sss). Model (2.2) is the model that we will use for inference. It should

be noted that the yearly index i and site index sss appear in the regression function mij(xxx,sss) as

UUU ijt(sss)’s distribution may change yearly and spatially.

Let Xijt = {XXX ijt(sss1)
T, . . . ,XXX ijt(sssL)T}T and eeeijt = {eijt(sss1), . . . , eijt(sssL)}T, where L is the num-

ber of air-quality monitoring sites. Then Xijt and eeeijt are 6L- and L-dimensional, respec-

tively, and collect the meteorological variables and standardized residuals of all the

sites in the region. We assume the multivariate time series {Xijt}
nij

t=1 and {eeeijt}
nij

t=1 are tempo-

rally stationary and weakly dependent satisfying the α-mixing condition (see the SI for details),

while leaving the spatial dependence unspecified to allow generality.

To better discuss the combined effects of emission and weather, we can assume an additive

structure to m̃j{XXX(sss),UUU(sss)} so that

m̃j{XXX(sss),UUU(sss)} = m̃j,1{XXX(sss)}+ m̃j,2{UUU(sss)}+ m̃j,3{XXX(sss),UUU(sss)}, (2.3)

where the main effects and the interaction are homogeneous with respect to the year and location,

but are seasonally specific. The corresponding version for the observed data is

mij(xxx,sss) = m̃j,1(xxx) + E[m̃j,2{UUU ijt(sss)}|XXX ijt(sss) = xxx] + E[m̃j,3{xxx,UUU ijt(sss)}|XXX ijt(sss) = xxx]. (2.4)

Both (2.3) and (2.4) serve to untangle the emission effect in the next section.

For our purpose, there is no need to build an elaborate parametric version of (2.2). It is also

not necessary to include the temporal lagged or the spatial neighbors’ responses. This is because

the aim of the study is in assessing the pollutant concentration rather than predicting it. For the

purpose of assessment, the nonparametric model (2.2) would be sufficient.
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3 Spatially and temporally adjusted measures

We propose a spatial and temporal adjustment approach to account for meteorological confounding

in statistical measures like the means or the quantiles under Model (2.2). This is motivated by

the practice in China and other countries where the averaged pollutant concentration over a time

horizon is used as measures of air quality. Thompson et al. (2001) considered a trend analysis

under linear regression models in the context of ground ozone pollution. We will show that the

adjustment offered by the trend analysis can be viewed as a special case of our proposed approach.

Ordinarily, the mean of Yijt(sss) is E{Yijt(sss)} = E[E{Yijt(sss)|XXX ijt(sss)}] = E[mij{XXX ijt(sss), sss}]. The

key is which probability density is used in the last expectation. A generic form for the mean is

E{Yijt(sss)} =

∫
mij(xxx,sss)fj(xxx,sss)dxxx, (3.1)

where fj(xxx,sss) denotes a generic density for XXX ijt(sss) in season j at site sss. Different forms of fj(xxx,sss)

lead to different measures as shown below.

Let fij(xxx,sss) be the density of XXX ijt(sss) for season j of year i at site sss. If one chooses fj(xxx,sss) =

fij(xxx,sss), the mean in (3.1) is denoted as µ0
ij(sss). The commonly used air-quality measure is the

simple average Ȳij(sss) = n−1ij

∑nij

t=1 Yijt(sss). By the law of large numbers for weakly dependent

processes, Ȳij(sss)
P→ µ0

ij(sss) as nij →∞. While µ0
ij(sss) and Ȳij(sss) measure the pollution exposure for

the health purpose, they are confounded by weather conditions of different years and locations.

Another version of fj(xxx,sss) is offered by averaging {faj(xxx,sss)}
Aj

a=1 for season j over Aj years.

Specifically, let f.j(xxx,sss) = A−1j

∑Aj

a=1 faj(xxx,sss), which defines the temporal baseline weather condi-

tion. Choosing fj(xxx,sss) = f.j(xxx,sss) in (3.1), we arrive at

µ̃ij(sss) =

∫
mij(xxx,sss)f.j(xxx,sss)dxxx = A−1j

Aj∑
a=1

∫
mij(xxx,sss)faj(xxx,sss)dxxx. (3.2)

The terms
∫
mij(xxx,sss)faj(xxx,sss)dxxx for a 6= i are counter-factuals [Rosenbaum and Rubin (1983)],

which provide the potential averages under other years’ weather but with year i’s pollution-weather

mechanism mij(xxx,sss). We call µ̃ij(sss) the temporally adjusted average.
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The {µ̃aj(sss)}
Aj

a=1 are comparable over different years as they are formulated under the temporal

baseline f.j(xxx,sss). Specifically, the difference

µ0
ij(sss)− µ̃ij(sss) =

∫
mij(xxx,sss){fij(xxx,sss)− f.j(xxx,sss)}dxxx

measures the amount of the weather confounding in year i, and

µ̃ij(sss)− µ̃kj(sss) =

∫
{mij(xxx,sss)−mkj(xxx,sss)}f.j(xxx,sss)dxxx

measures the temporal treatment effect due to different emission levels between years i and k.

Thompson et al. (2001) considered a trend analysis in the linear regression model to

gain information on the trend of the ground level ozone pollution. The trend analysis

can be included in our proposed framework under the linear regression setting. To

appreciate this, suppose the regression function mij(xxx,sss) is linear such that

Yijt(sss) = αij(sss) + βββT
ij(sss)X̃XX ijt(sss) + εijt(sss), (3.3)

where X̃XX ijt(sss) are temporally centered covariates over Aj years. Then, it is readily

shown that µ̃ij(sss) = αij(sss) due to temporal centering of covariates, which was not

explicitly stated in Thompson et al. (2001). Moreover, αij(sss) can be used for spatio-

temporal comparison, and αij(sss) = µij(sss), the spatially and temporally adjusted aver-

age which we will define below. It should be noted that our proposed adjustments by

µ̃ij(sss) and µij(sss) allow more general regression models with linear regression employed

by the trend analysis as a special case.

The temporally adjusted means µ̃ij(sss) are not comparable spatially for {µ̃aj(sss1)}
Aj

a=1 and

{µ̃aj(sss2)}
Aj

a=1 at two different sites sss1 and sss2 since the two sites can bear different weather dis-

tributions. In the following, we takes into account spatial variations into temporal adjustment.

As indicated earlier, the study region R has S meteorological sites whose locations are collected in

W . We can define the spatial and temporal baseline as a weighted version of f.j(xxx,sss).

Specifically, let p(sss) be a probability density function over the study region. We can
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construct a weighted spatio-temporal weather baseline as

fp
.j(xxx) =

∫
sss∈R

f.j(xxx,sss)p(sss)dsss.

Under the fixed design sampling over space, if we select p(sss) as the uniformly dis-

tributed density over the meteorological sites, we obtain

f.j(xxx) = S−1
∑
sss′∈W

f.j(xxx,sss
′). (3.4)

We call f.j(xxx) the spatio-temporal weather baseline over R for season j. In the follow-

ing, we will use this unweighted baseline f.j(xxx) to simplify the analysis. Using f.j(xxx)

in (3.4), we arrive at the spatially and temporally adjusted average:

µij(sss) =

∫
mij(xxx,sss)f.j(xxx)dxxx = S−1A−1j

∑
sss′∈W

Aj∑
a=1

∫
mij(xxx,sss)faj(xxx,sss

′)dxxx, (3.5)

where those terms with a 6= i or sss′ 6= sss are spatial and temporal counter-factuals.

We now outline the benefits of the spatial and temporal adjustment under the additive regres-

sion framework (2.3) and (2.4). Define

µM
j =

∫
m̃j,1(xxx)f.j(xxx)dxxx, µE

ij(sss) =

∫
E[m̃j,2{UUU ijt(sss)}|XXX ijt(sss) = xxx]f.j(xxx)dxxx and

µME
ij (sss) =

∫
E[m̃j,3{xxx,UUU ijt(sss)}|XXX ijt(sss) = xxx]f.j(xxx)dxxx.

From (3.5), µij(sss) = µM
j + µE

ij(sss) + µME
ij (sss). It is noted that the meteorological effect µM

j , due

to the spatial and temporal adjustment, is the same for all the years and locations at a given

season j. However, the emission and the interaction effects µE
ij(sss) and µME

ij (sss) can vary yearly and

spatially as the distribution of UUU ijt(sss) can differ in years and sites at season j.

Hence, the yearly difference in two consecutive years at season j is

µij(sss)− µi−1,j(sss) = µE
ij(sss)− µE

i−1,j(sss) + µME
ij (sss)− µME

i−1,j(sss).

Consider the yearly change related to the emission

µE
ij(sss)− µE

i−1,j(sss) =

∫ ∫
m̃j,2(uuu){gij(uuu,sss|xxx)− gi−1,j(uuu,sss|xxx)}f.j(xxx)duuudxxx, (3.6)

where gij(uuu,sss|xxx) is the conditional density of UUU ijt(sss) given XXX ijt(sss) = xxx. Similarly, the yearly
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change related to the interaction is

µME
ij (sss)− µME

i−1,j(sss) =

∫ ∫
m̃j,3(xxx,uuu){gij(uuu,sss|xxx)− gi−1,j(uuu,sss|xxx)}f.j(xxx)duuudxxx. (3.7)

Both yearly changes in (3.6) and (3.7) are dependent on gij(uuu,sss|xxx) − gi−1,j(uuu,sss|xxx), the yearly

change in the conditional densities. This is only possible with the employment of the spatio-

temporal baseline weather condition f.j(xxx). Without the baseline, we can not attribute the yearly

differences to that in the emission as it may be due to yearly change in the meteorological condition.

The same analysis can be made when we compare µij(sss1) and µij(sss2) at two locations, and

we can attribute the difference as the difference in the emission profiles at two locations since the

meteorological variables have been standardized spatially.

With the spatially and temporally adjusted measure µij(sss), we can construct the average

pollutant concentration in an area A. The average pollution over A is

µij(A) = |A|−1
∑
sss∈A

µij(sss), (3.8)

where |A| denotes the number of air-quality monitoring sites in A. This version of the regional

air-quality measure µij(A) is a simple average of µij(sss) over air-quality monitoring sites

in A, corresponding to the design commonly practiced in China’s air-quality man-

agement. It may be viewed as conditioning on the locations of the monitoring sites,

which mirrors the fix design survey sampling approach. In practice, the distribution

of the monitoring sites may not be evenly distributed with certain area (for instance

north of Beijing) having a higher density of the sites relative to another region (south

of Beijing). The region with less number of monitoring sites will encounter higher

variation, as compared to a region with more sites, while other things being equal.

To counter the uneven site distributions, we can introduce a weight function wA(sss)

to attain a weighted version of the regional mean:

µw
ij(A) = |A|−1

∑
sss∈A

µij(sss)wA(sss)dsss,

10
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where wA(sss) may re-allocate weights to attain spatial balance. For ease of expedition,

we will consider (3.8) for µij(A) in both theoretical and empirical studies.

4 Estimation and theoretical properties

A key step in constructing estimators for µij(sss) in (3.5) and µij(A) in (3.8) is to estimate mij(xxx,sss).

In this paper, we adopt the nonparametric kernel method [Härdle (1990); Fan and Yao (2003)] for

estimating the regression function mij(xxx,sss).

We partitionXXX ijt(sss) = {ZZZijt(sss)
T,Wijt(sss)}T so that Wijt(sss) is the categorical wind direction and

ZZZijt(sss) contains the remaining continuous covariates of d-dimension. Let K(·) be a d-dimensional

symmetric kernel function (see the SI for details). Define

KHHH(zzz) = (h1h2 · · ·hd)−1K(z1/h1, . . . , zd/hd),

where zzz = (z1, . . . , zd)
T, and HHH = (h1, . . . , hd)

T is a vector of smoothing bandwidths. The kernel

estimator [Fan and Yao (2003)] of mij(xxx,sss) using data of season j of year i at site sss under wind

direction w is

m̂ij(zzz, w;sss) =

∑nij

t=1KHHH{zzz −ZZZijt(sss)}Yijt(sss)I{Wijt(sss) = w}∑nij

t=1KHHH{zzz −ZZZijt(sss)}I{Wijt(sss) = w}
, (4.1)

where nij is the sample size, and I(·) is the indicator function, and Wijt(sss) = 1, . . . , 5 correspond

to wind directions CV, NE, NW, SE, and SW.

The smoothing bandwidths are chosen based on the cross-validation method [Härdle (1990);

Fan and Yao (2003)] for each given wind direction. In some seasons when the sample size under

a wind direction was small, they were merged with data of another direction that had the similar

effect on the pollution. For instance, the three pollution-enhancing wind directions SW, CV and

SE can be combined, so are the two pollution-reducing directions NW and NE. It is noted that

the targets of inference are about µij(sss) and µij(A) which are integrated versions of mij(xxx,sss). As

shown in Theorems 1 and 2, estimators of µij(sss) and µij(A) enjoy the root-n convergence rate.
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This means they are less sensitive to the smoothing bandwidths than the estimators m̂ij(xxx,sss).

For any xxx = (zzzT, w)T, let F̂.j(xxx) be the empirical distribution function corresponding to the

distribution F.j(xxx) with f.j(xxx) as the density. F̂.j(xxx) could be obtained based on Aj years’ data

at all sites for season j. According to the law of large numbers, there is no need to explicitly

construct F̂.j(xxx) and the proposed estimator of µij(sss) is

µ̂ij(sss) =

∫
m̂ij(xxx,sss)dF̂.j(xxx)

= S−1

 Aj∑
a=1

naj

−1 5∑
w=1

∑
sss′∈W

Aj∑
a=1

naj∑
t=1

m̂ij{ZZZajt(sss
′), w,sss}I{Wajt(sss

′) = w}, (4.2)

where m̂ij(xxx,sss) is given in (4.1). The regional average µij(A) is estimated by

µ̂ij(A) = |A|−1
∑
sss∈A

µ̂ij(sss). (4.3)

We can extend the above framework to meteorologically adjusted distribution of the pollutant,

which can produce adjusted quantiles to provide information about extreme levels of concentra-

tions. Similar to the adjusted average in (3.5), we define the adjusted distribution function for

season j of year i at site sss as

Gij(y,sss) =
5∑

w=1

∫
Fij(y,sss|zzz, w)f.j(zzz, w)dzzz,

where Fij(y,sss|zzz, w) = P{Yijt(sss) ≤ y|ZZZijt(sss) = zzz,Wijt(sss) = w} is the conditional distribution.

Similar to (4.2), the estimator of Gij(y,sss) is

Ĝij(y,sss) = S−1

 Aj∑
a=1

naj

−1 5∑
w=1

∑
sss′∈W

Aj∑
a=1

naj∑
t=1

F̂ij{y,sss|ZZZajt(sss
′), w}I{Wajt(sss

′) = w}, (4.4)

where

F̂ij(y,sss|zzz, w) =

∑nij

t=1K
′
HHH′{zzz −ZZZijt(sss)}Rh0{Yijt(sss)− y}I{Wijt(sss) = w}∑nij

t=1K
′
HHH′{zzz −ZZZijt(sss)}I{Wijt(sss) = w}

is the kernel estimator of Fij(y,sss|zzz, w). Here Rh0(y) =
∫ y/h0

0
k(u)du is the integration of the

univariate kernel k(·) and h0 is the smoothing bandwidth. For any q ∈ (0, 1), the adjusted q-th

percentile is estimated by Ĝ−1ij (q,sss), the inverse of the estimated adjusted distribution function.
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We present asymptotic properties of estimators µ̂ij(sss) and µ̂ij(A) in the rest of this section.

To simplify the presentation, we consider the case where the covariates in XXX ijt(sss) are continuous,

which essentially considers adjusted averages at each wind direction. The overall results for (4.2)

and (4.3) can be obtained by combining the results of all wind directions. Under such arrangement,

m̂ij(xxx,sss) =

∑nij

t=1KHHH{xxx−XXX ijt(sss)}Yijt(sss)∑nij

t=1KHHH{xxx−XXX ijt(sss)}
and

µ̂ij(sss) =

∫
m̂ij(xxx,sss)dF̂.j(xxx) = S−1

 Aj∑
a=1

naj

−1 Aj∑
a=1

∑
sss′∈W

naj∑
t=1

m̂ij{XXXajt(sss
′), sss}.

We first introduce some notations. Recall that Xijt = {XXX ijt(sss1)
T, . . . ,XXX ijt(sssL)T}T and

eeeijt = {eijt(sss1), . . . , eijt(sssL)}T. Similarly, define Uijt = {UUU ijt(sss1)
T, . . . ,UUU ijt(sssL)T}T. Under the

temporal stationarity assumptions of Xijt and eeeijt (see the SI for details), define qij,t−t′(xxx,xxx
′;sss,sss′)

as the joint density of XXX ijt(sss) and XXX ijt′(sss
′), ρ(|t− t′|;sss,sss′) = E{eijt(sss)eijt′(sss′)|Fij} and

Ca
i1i2,j,t1−t2(sss

′
1, sss
′
2;sss1, sss2) = Cov[mi1j{XXXajt1(sss

′
1), sss1},mi2j{XXXajt2(sss

′
2), sss2}].

The assumptions needed for the theorems in this section along with their proofs are given in

the SI. The major ones are for a given pair of i and j: (i) the emission {Uijt}
nij

t=1 are identically

distributed; (ii) the weather variables {Xijt}
nij

t=1 and the standardized residuals {eeeijt}
nij

t=1 are both

temporally strictly stationary and α-mixing, but not necessarily spatially stationarity to allow

more flexible spatial dependence. Under regularity conditions, we can define

γij(sss1, sss2) =
∞∑

k=−∞

ρ(|k|;sss1, sss2)
∫∫

σij(xxx1, sss1)σij(xxx2, sss2)
qij,k(xxx1,xxx2;sss1, sss2)

fij(xxx1, sss1)fij(xxx2, sss2)
dF.j(xxx1)dF.j(xxx2),

λi1i2,j(sss1, sss2) = S−2A−2j

Aj∑
a=1

∑
sss′1,sss

′
2∈W

∞∑
k=−∞

Ca
i1i2,j,k

(sss′1, sss
′
2;sss1, sss2),

and their corresponding regional versions

γij(A,B) = |A|−1|B|−1
∑

sss1∈A,sss2∈B

γij(sss1, sss2) and λi1i2,j(A,B) = |A|−1|B|−1
∑

sss1∈A,sss2∈B

λi1i2,j(sss1, sss2).

Theorem 1. Under Assumptions 1 – 9 given in the SI, as nij →∞,

√
nij {µ̂ij(sss)− µij(sss)}

d→ N(0, σ̃2
ij(sss,sss)) and

√
nij {µ̂ij(A)− µij(A)} d→ N(0, σ̃2

ij(A,A)),
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where σ̃2
ij(sss,sss) = γij(sss,sss) + λii,j(sss,sss) and σ̃2

ij(A,A) = γij(A,A) + λii,j(A,A).

We note that the bias commonly associated with the kernel estimation vanishes in Theorem 1

due to the under-smoothing entailed under Assumption 8 as elaborated in the SI.

To compare the adjusted averages between two years i1 and i2 or between two different regions

A and B, we need to derive the asymptotic distributions of µ̂i2j(A)− µ̂i1j(A) and µ̂ij(A)− µ̂ij(B),

respectively. The following theorem provides the needed results. Define

φi1i2,j(sss1, sss2) = λi1i1,j(sss1, sss2) + λi2i2,j(sss1, sss2)− λi1i2,j(sss1, sss2)− λi2i1,j(sss1, sss2) and

φi1i2,j(A,B) = |A|−1|B|−1
∑

sss1∈A,sss2∈B

φi1i2,j(sss1, sss2).

Theorem 2. Under Assumptions 1 – 9 in the SI, (i) for i1 6= i2, as ni1j, ni2j →∞,

√
ni1j[{µ̂i2j(A)− µ̂i1j(A)} − {µi2j(A)− µi1j(A)}] d→ N(0, σ̃2

i2i1,j
(A)),

where σ̃2
i2i1,j

(A) =
∑2

p=1 γipj(A,A) + φi1i2,j(A,A); and (ii) for A ∩ B = ∅, as nij →∞,

√
nij[{µ̂ij(A)− µ̂ij(B)} − {µij(A)− µij(B)}] d→ N(0, σ̃2

ij(A− B)),

where σ̃2
ij(A− B) = σ̃2

ij(A,A)− 2σ̃2
ij(A,B) + σ̃2

ij(B,B) with σ̃2
ij(A,B) = γij(A,B) + λii,j(A,B).

The asymptotic normality in Theorem 2 allows us to assess the statistical significances in

spatial and temporal differences of the adjusted averages in the empirical study in Section 6.

5 Variance estimation and hypothesis testing

Since the asymptotic variance in Theorem 2 is quite involved, we propose a bootstrap procedure

to obtain their estimation. To begin with, it may be shown that as nij →∞,

µ̂ij(sss)− µij(sss) = Tij,1(sss) + Tij,2(sss) + oP (n
−1/2
ij ),

where the two leading terms that determine the asymptotic variance are

Tij,1(sss) =

∫
{m̂ij(xxx,sss)−mij(xxx,sss)}dF.j(xxx) and

14

Page 14 of 48

math.scichina.com/english

SCIENCE CHINA Mathematics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

Tij,2(sss) =

∫
mij(xxx,sss)d{F̂.j(xxx)− F.j(xxx)}

= S−1
∑
sss′∈W

Aj∑
a=1

n−1aj

naj∑
t=1

naj

 Aj∑
a=1

naj

−1mij{XXXajt(sss
′), sss} − A−1j

∫
mij(xxx,sss)dFaj(xxx,sss

′)

 ,
where F.j(xxx) and Faj(xxx,sss

′) are the distributions matched to f.j(xxx) and faj(xxx,sss
′), respectively.

The forms of Tij,1(sss) and Tij,2(sss) suggest a bootstrap strategy that combines the temporal block

bootstrap [Carlstein (1986)] on meteorological data with the wild bootstrap [Liu (1988); Härdle

and Mammen (1993)] that resamples the residuals of the regression model (2.2). In order to

keep the spatial dependence in the residuals, we resample estimators of residual vectors {eeeijt}
nij

t=1.

An underlying reason for separating the temporal and spatial bootstrap is that the temporal

dependence has negligible contributions to the variance of Tij,1(sss) due to the whitening effect of

the kernel smoothing which retains the leading order term as shown in Kreiss et al. (2008).

The temporal dependence in Tij,2(sss) is handled by the temporal block bootstrap method.

To this end, we combine meteorological data from all sites to form the time series [Xijt =

{XXX ijt(sss1)
T, . . . ,XXX ijt(sssL)T}T, t = 1, . . . , nij] in season j and year i. DefineBBB1 = (XT

ij1, . . . ,XT
ijl)

T, . . . ,

BBBnij−l+1 = (XT
ij,nij−l+1, . . . ,XT

ij,nij
)T,BBBnij−l+2 = (XT

ij,nij−l+2, . . . ,XT
ij,nij

,XT
ij,1)

T, . . . ,BBBnij
= (XT

ij,nij
,

XT
ij,1, . . . ,XT

ij,l−1)
T as a series of circular moving blocks [Davison and Hinkley (1997)] with length l,

which makes every observation have the same chance to be selected in resampled data. We choose

l = 12 (hours) based on experience with the data. For the b-th replication, we randomly sample

nij/l blocks from {BBBt}
nij

t=1 with replacement and combine them to obtain a resampled weather

series [X∗bijt = {XXX∗bijt(sss1)T, . . . ,XXX∗bijt(sssL)T}T, t = 1, . . . , nij] for season j and year i.

To generate bootstrap samples of the response variables Y ∗ijt(sss), we still need to resample the

standardized residuals, whose core idea is the wild bootstrap or the regression bootstrap advocated

by Liu (1988) and Kreiss et al. (2008). Given the estimated regression function m̂ij{XXX ijt(sss), sss} in

(4.1), the conditional variance σ2
ij{XXX ijt(sss), sss} can be estimated by applying the kernel smoothing
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approach on ε̂2ijt(sss) = [Yijt(sss)− m̂ij{XXX ijt(sss), sss}]2, so that for xxx = (zzzT, w)T,

σ̂2
ij(xxx,sss) =

∑nij

t=1 K̃H̃HH{zzz −ZZZijt(sss)}ε̂2ijt(sss)I{Wijt(sss) = w}∑nij

t=1 K̃H̃HH{zzz −ZZZijt(sss)}I{Wijt(sss) = w}
. (5.1)

Here the bandwidths are selected afresh by applying the cross-validation method. This leads to

the estimators of standardized residuals

êijt(sss) = ε̂ijt(sss)/σ̂ij{XXX ijt(sss), sss} (5.2)

and êeeijt = {êijt(sss1), . . . , êijt(sssL)}T. Let

Σ̂ΣΣij = n−1ij

nij∑
t=1

êeeijtêee
T

ijt −

(
n−1ij

nij∑
t=1

êeeijt

)(
n−1ij

nij∑
t=1

êeeijt

)T

.

We generate resamples of the standardized residual by êee∗bijt
iid∼ NL(000, Σ̂ΣΣij), which together with the

resampled weather process lead to the resampled responses

Y ∗bijt(sss) = m̂ij{XXX∗bijt(sss), sss}+ σ̂ij{XXX∗bijt(sss), sss}êee
∗b
ijt(sss), (5.3)

for t = 1, · · · , nij. We re-compute the adjusted average for each bootstrap replication by

µ̂∗bij (sss) = S−1

 Aj∑
a=1

naj

−1 5∑
w=1

∑
sss′∈W

Aj∑
a=1

naj∑
t=1

m̂b
ij{ZZZ∗bajt(sss′), w,sss}I{W ∗b

ajt(sss
′) = w} and

µ̂∗bij (A) = |A|−1
∑
sss∈A

µ̂∗bij (sss).

The bootstrap standard deviations of µ̂ij(sss), µ̂ij(A), µ̂i2j(A) − µ̂i1j(A) and µ̂ij(A) − µ̂ij(B) can

be obtained via Monte-Carlo simulation, which are denoted as ˆ̃σij(sss,sss), ˆ̃σij(A,A), ˆ̃σi2i1,j(A) and

ˆ̃σij(A−B), respectively. These standard errors together with the spatial and temporal differences

in the adjusted averages are used for assessing changes in regional air quality.

For testing the yearly difference hypotheses H0 : µi2j(A) = µi1j(A) versus H1 : µi2j(A) >

(<)µi1j(A), we use the test statistic {µ̂i2j(A) − µ̂i1j(A)}/ˆ̃σi2i1,j(A). For detecting any regional

difference, we consider testing H0 : µij(A) = µij(B) versus H1 : µij(A) > (<)µij(B) with the test

statistic {µ̂ij(A)− µ̂ij(B)}/ˆ̃σij(A−B). Both statistics asymptotically follow the standard normal

distribution by Theorems 1 and 2, which allows obtaining the p-values for statistical significance.
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6 Application to Beijing’s air pollution data

6.1 Model diagnostics

We conducted diagnostics to the nonparametric model (2.2) by first carrying out the nonparametric

kernel estimation for the regression function given in (4.1). As a first diagnostic check, Table S1

of the SI provides the fitted R2 for six pollutants from Spring 2013 to Winter 2016. It shows that

the R2s were mostly above 70%, indicating reasonable fit of Model (2.2).

An important notion in modeling dependence of spatial data is the semi-variogram

[Cressie (1993)], which we will outline in the context of analyzing the standardized

residual process. Under the temporal stationarity assumption, the semi-variogram

function for the standardized residual process {eijt(sss) : sss ∈ R} at hour t of year i and

season j is

γij(sss,sss
′) = 2−1E

[
{eijt(sss)− eijt(sss′)}2

]
, for any sss,sss′ ∈ R. (6.1)

The process {eijt(sss) : sss ∈ R} is said to be spatially stationary if γij(sss,sss
′) = γij(sss−sss′) and

isotropic if γij(sss,sss
′) = γij(‖sss− sss′‖) by a slight abuse of notation, where ‖·‖ denotes the

Euclidean norm. The semi-variogram for other processes such as the PM2.5 and SO2

processes can be similarly defined.

Specifically, γij(0) is called the nugget effect, which denotes the variability that

cannot be explained by the spatial correlation. The nugget effect is caused by mea-

surement errors, and requires densely populated sites in order to be estimated accu-

rately. Under the isotropic assumption, as h increases, γij(h) would gradually increase

initially and then level off beyond a distance, commonly called the range. The value

of the semi-variogram at the range is called the sill. Any two sites with a distance

larger than the range would have no spatial dependence.

Under the temporal stationarity assumption, the semi-variograms between any
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two sites sssl1 and sssl2 is estimated by, in the case of the standardized residual process,

γ̂ij(‖sssl1 − sssl2‖) =
1

2nij

nij∑
t=1

{êijt(sssl1)− êijt(sssl2)}2, for l1, l2 = 1, . . . , L, (6.2)

which are represented by dots in Figures 2 and S1.

Motivated by Jun and Stein (2004), to gain information on the large scale spatial dependence,

we display in Figure S1 of the SI the semi-variograms for the raw pollution readings, the fitted

values by nonparametric regression, and the estimated residuals ε̂ijt(s) = Yijt(sss)− m̂ij{XXX ijt(sss), sss}

for PM2.5, SO2, NO2 and the 8-hour O3 for the summers and winters of 2015 and 2016, respectively.

Figure S1 shows that the semi-variograms for the raw PM2.5 and SO2 displayed stronger non-

stationarity and longer-range dependence, while those for the raw NO2 and O3 were relatively

flatter even at larger distances. The latter revealed weaker spatial dependence for NO2 and O3

due to their shorter life expectancy as both gases are more chemically reactive, and hence cannot

travel afar. The figure also shows that the semi-variograms of the raw pollutants were closely

imitated by those of the fitted values, which indicated reasonable fitting performance of the kernel

regression approach from the aspect of spatial dependence. The semi-variograms for the estimated

residuals show much weaker dependence, which demonstrates the ability of the regression models

in picking up the large scale trend and variation in observed concentrations.

Figure 2 presents the locally estimated scatterplot smoothing (LOESS) estimates [Cleve-

land and Devlin (1988)] of semi-variograms, which essentially smooth γ̂ij(h) with respect to the

distance h for PM2.5, SO2, NO2 and 8-hour O3 (12 noon to 7 pm). These LOESS fitted curves

show there was no much spatial dependence beyond 20 kms in majority of the plots as the semi-

variograms ceased to increase significantly after 20 kms, indicating Model (2.2) captures the main

aspects of the spatial dependence. Figure S2 of the SI provides the autoregression functions of the

standardized residuals of PM2.5 at three monitoring sites and the corresponding long-run covari-

ance function, showing that summer tended to have stronger temporal dependence than that of

the other three seasons which is likely induced by Beijing’s rather static weather pattern in sum-
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mer. These semi-variograms in Figure 2 had comparable shapes, magnitudes and nugget effects,

indicating the innovation processes {eijt(sss) : sss ∈ R} for the four pollutants share some common

features of spatial dependence.

6.2 Concentration maps

We adopt the adjustment method to obtain µ̂ij(sss), the estimated adjusted averages at all 28

monitoring sites for each season and year. Then we conduct the spatial kernel smoothing of the

adjusted averages µ̂ij(sss) over the study region with a bivariate productive Gaussian kernel and a

smoothing bandwidth h = 0.15 degrees in latitude and longitude. These give rise to the seasonal

concentration maps of the air pollutants for each season and year. Figure 3 display those of PM2.5

and NO2 from 2013 to 2016, while those SO2 and 8-hour O3 are provided in Figures S3 in the SI.

Figures 3 and S3 show that PM2.5, SO2 and NO2 concentrations share a similar seasonal pattern

of high winter and low summer with those of fall and spring situated in between. The 8-hour O3

has a reversed seasonality such that the summer and spring were the high seasons, and winter

and fall were the low seasons. This is because the photo-chemical process that governs the ground

level ozone generation requires ultra-violet light (u.v.) from the sun, which is the reason for the

consideration of 8-hour O3 from 12 noon to 7 pm, the period when the O3 concentration tended

to be the highest.

On top of these seasonal patterns, PM2.5 exhibited large spatial variations with the southern

part of Beijing having much higher concentrations than the other areas, especially in the severely

polluted winter season. The spatial variations of other three pollutants were much less than that

of PM2.5. Figure 3 displays elevated circular ridges of NO2 over the city center, which were the

most evident in 2014 and still quite noticeable in 2016. This was largely due to the motor vehicle

emissions of NO and NO2, especially under traffic congestion that Beijing is famous for. The peaks

of the circular ridges were situated in the east part of the city between the Third and Fourth Ring
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Roads, which coincides with the most congested area of the capital. The circular shape of the

NO2 distribution reflected the fact that NO2 can not be transported afar due to its much shorter

life expectancy as it is highly chemically reactive.

A close inspection of the ozone concentration map in Figure S3 shows the low concentration

basin was in the area where NO2 was high. The basin was the most apparent in the summer and

spring of 2014. This trade-off between NO2 and O3 was a result of a chemical reaction equation

NO2+O2

u.v.

� NO+O3. As emissions from motor vehicles are primarily NO (and CO), the equation

implies that direct emission of NO consumes O3 for the generation of NO2, which explains the

trade-off. Of course, the inverse reaction is also valid under the condition of the ultra-violet (u.v.)

radiation, which explains why the O3 level is the highest in the afternoon and in summer.

Figure 3 reveals temporal reductions of PM2.5 from 2014 to 2015 especially in summer and

fall. However, it is hard to detect noticeable improvement from 2015 to 2016. In contrast, the

figure demonstrates clear reductions in SO2 from 2014 to 2016 in all seasons. Confirmations of the

reduction being statistically significant will be made in the following subsection when we carry

out inference for air-quality measures. In contrast, the improvement, if any, in NO2 and O3 in

Figures 3 and S3 was rather unclear, and needs formal confirmation via statistical testing, again

in the following subsection.

6.3 Regional air-quality assessment

In this section, we utilize the tests outlined in Section 5 to conduct assessments on the yearly and

regional differences in air pollution levels. We focus on the temporal differences µi2j(A)− µi1j(A)

for i2 = i1 + 1, and the spatial differences µij(A) − µij(B) for A being the Southern and B the

Central areas, respectively.

Figure 4 displays the seasonal average concentrations in the Central and Southern areas for

PM2.5, SO2, NO2 and 8-hour O3 from 2013 to 2016. It shows that the average seasonal PM2.5
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levels were persistently higher than 35μg/m3, the Interim target-1 limit set by the World Health

Organization (WHO). The NO2 average concentrations in the Central area were also consistently

over the WHO limit of 40μg/m3 set in all seasons, while SO2 and O3 were relatively better with

SO2 exceeding the WHO limit only in the winter and O3 in the summer of the last two years. The

Southern area had much higher PM2.5, but less NO2 than the Central area. That the Southern

area has higher PM2.5 reflected the transported fine particulate matters from the heavy industrial

Hebei Province. Meanwhile, the high NO2 in the Central area was attributed to much elevated

emission from motor vehicles due to congested traffic, since more than 70% of the population in

the capital are resided in the Central area.

To formally check whether there were significant differences between the two areas, Table 1

gives Southern minus Central averages along with their standard errors and p-values for testing

against the Southern being higher than the Central for PM2.5, SO2, and 8-hour O3, and the

opposite for NO2. Numerical figures in the table reveal southern-high, central-low pattern for

SO2 and 8-hour O3, which are not that visible in Figure 4. The table reports the p-values in

four categories: those larger than 0.01, those in (10−9, 0.01] marked with one ∗, (10−16, 10−9]

attracting two ∗s, and those smaller than 10−16 with three ∗s. Our deliberate using rather smaller

p-value ranges was to account for multiplicity from testing hypotheses over the 16 seasons and 4

pollutants. If counted by the number of p-values with two or three ∗s out of the total of 16, the

Southern-Central difference was the most significant for NO2 (15 out 16), followed by PM2.5 (11

out of 16) and O3 (9 out of 16). SO2 exhibited the least difference with 3 out of 16 having no ∗,

which were the highest among the four pollutants.

To gain information on yearly changes in air quality, we took differences in the adjusted

averages between consecutive years and then employed the proposed spatio-temporal bootstrap

approach to obtain standard errors and p-values for significances for four pollutants, which are

displayed in Figure 5. It is observed that the temporal differences were much less significant than
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the regional differences as reported in Table 1. Indeed, there were only 2 significant yearly changes

out of 16 for PM2.5 in Central, and 7 out of 16 for the Southern area, and those significant p-values

were largely at one ∗ level indicating rather weak change if at all. Among the four pollutants,

SO2 was the most significant in both areas, followed by 8-hour O3 and NO2. PM2.5 had the least

changes in the last four years among the four pollutants.

The reduction in SO2 in Years 2014 and 2015 was very substantial and encouraging, and was a

bright spot for Beijing’s air-quality management in the last four years. Comparing with SO2, the

other three pollutants’ performances in the last four years were rather lackluster. It is clear that

2015 was the year that had the most significant improvement as reflected by significant reductions

in PM2.5, SO2 and NO2. This was largely linked to the economic slowing down in the last economic

cycle. Although PM2.5 was significantly reduced in 2015 at the 1% significance level, there was

no improvement in 2016 but an insignificant increase in the Central area. This was worrying

as it showed the reduction in the fine particular matters was in a stalemate in 2016. The same

stalemate was also observed in NO2 and O3 in 2016.

The above assessments indicated the challenge faced by Beijing’s air-quality management.

While the SO2 level has been reduced significantly, it has not translated to a continued PM2.5

reduction at the time. Our analysis suggests an urgent need to reduce the NO2 level caused by

the motor vehicle emission in order to find a new driving force for PM2.5’s decline. Cutting back

NO2 will also reduce the level of O3 which has been on a rising curve in the broader Beijing-

Tianjin-Hebei region as shown in Chen et al. (2018).

We also compared the proposed adjustment method with two existing methods.

One was the trend analysis method given in Thompson et al. (2001) which we have

outlined in Section 3, and the other was the three-year moving average method

advocated by US Environmental Protection Agency (EPA). Details and the problems

with the moving average method had been documented in Chen et al. (2018). Figure
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6 displays the average concentrations of PM2.5 and SO2 using the three methods for

Central and Southern areas. The plots for NO2 and 8-hour O3 are provided in Figure

S4 in the SI. Both figures show substantial differences between the proposed approach

and the other two methods especially in winter and fall seasons for PM2.5, SO2 and

NO2. Table 2 reports numerical average differences between the proposed approach

and the other two methods, respectively. It reveals that the average differences in

winter were more than 6μg/m3 and 10μg/m3 for PM2.5 in the two areas, respectively,

which showed substantial amounts of annual improvement in these four pollutants in

the last a few winters in Beijing.

7 Discussion

We have proposed a spatial and temporal adjustment method for objectively assessing air quality

in a region that removes meteorological confounding and produces spatially and temporally com-

parable air-quality estimates. The method is able to quantify underlying changes in the emission,

which would be much more time consuming to measure based on the emission inventory method.

We have established the theoretical properties of the air-quality measures, and have

utilized them for a comprehensive evaluation on air quality in a region around Bei-

jing by analyzing the pattern and trend for the major air pollutants. The theoretical

justification along with the simulation experiments provides the necessary guarantee

for the performance of the adjustment method.

The study reported in this paper focuses on the region of Beijing, where the

air-quality monitoring sites and the meteorological stations are relatively close to

each other. If they are far apart, we can use the spatial kriging method to impute

meteorological variables at each air-quality site for the purpose of estimating the
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regression function. However, the meteorological stations are much denser than the

Guokong (nationally controlled) air-quality monitoring sites in most cities in China,

so this is less of an issue. One may also wonder whether the methodology still works

if the air-quality monitoring sites are not close to each other. Generally speaking, as

long as the meteorological covariates from the sites share common domains to allow

the definition of the spatial and temporal baseline density f.j(xxx), the adjustment

method can be carried out with guaranteed performance given the site configuration.

Our experience suggests that the proposed approach can be used to assess air quality

in quite a large region, for instance the North China Plain (NCP), since the NCP

shares common meteorological characteristics.

Our assessment reveals significant reduction in SO2 while the improvements in PM2.5 and

NO2 were much subdued up to early 2017, the end time of the data. There has been an upward

trend for the ground level ozone that deserves attention. Although the implementation of the

air-quality assessment method is demonstrated using nonparametric regression in the study, a

suitable parametric or semiparametric regression model can be used as well.
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Figure 1: Locations of air-quality monitoring sites (red circles) and meteorological stations (blue trian-
gles) in the North China Plain portion of Beijing. Insert: the study region within the North China Plain
and mountain ranges to the west and north.
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Figure 2: Semi-variograms of the standardized residuals of the nonparametric model of PM2.5 (black),
SO2 (blue), NO2 (green) and 8-hour O3 (red) in 2015 (Panel A) and 2016 (Panel B). The dots represent
the empirical estimation of semi-variograms. The lines are the smoothed curves of the empirical semi-
variograms by the nonparametric LOESS method.
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For Review Only

A PM2.5

B NO2

Figure 3: Seasonal concentration maps of the spatio-temporal adjusted averaged concentration (μg/m3)
of PM2.5 (Panel A) and NO2 (Panel B) in the urban area of Beijing from Year 2013 to Year 2016. The
number above each plot displays the regional adjusted average in Beijing while the number inside the
parentheses is the standard error. The smoothing bandwidth used for generating the map is 0.15.
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Figure 4: Seasonally adjusted averages (μg/m3) with the bars indicating the 95% confidence intervals.
The averages for a region are obtained by averaging the adjusted averages at all sites in the region. The
blue dashed line in each figure suggests the standard indicated by the WHO, which are 35μg/m3 (Interim
target-1) for PM2.5, 20μg/m3, 40μg/m3 and 100μg/m3 for SO2, NO2 and 8-hour O3, respectively.
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Figure 5: Yearly differences (μg/m3) in the adjusted averages. where the number of ∗ indicates the level
of significance in the yearly increase or decrease ( ∗: 10−9 ≤ p-value< 10−2; ∗∗: 10−9 ≤ p-value< 10−16;
∗∗∗: p-value< 10−16).
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Figure 6: Seasonally adjusted averages by using our proposed method, three-year moving average and
the trend analysis for PM2.5 and SO2 in the Central and Southern areas.
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Table 1: Regional differences (standard errors, μg/m3) of seasonal and annual adjusted averages of
PM2.5, SO2, NO2 and 8-hour O3 between Southern and Central areas (Southern - Central).

Pollutant Season 2013 2014 2015 2016

PM2.5

Spring 9.5(1.2)∗∗ 11.9(1.1)∗∗∗ 11.7(1.2)∗∗∗ 8.2(1.6)∗

Summer 6.9(1.3)∗ -3.7(1.2)∗ 5.1(0.8)∗∗ 1.8(1.0)
Fall 19.1(2.1)∗∗∗ 26.8(2.4)∗∗∗ 17.2(3.3)∗ 17.7(1.8)∗∗∗

Winter 36.0(1.7)∗∗∗ 50.8(1.8)∗∗∗ 66.8(2.2)∗∗∗ 45.8(2.1)∗∗∗

Average 17.9(0.8)∗∗∗ 21.4(0.9)∗∗∗ 25.2(1.1)∗∗∗ 18.4(0.8)∗∗∗

SO2

Spring 5.1(0.5)∗∗∗ 3.8(0.5)∗∗ 3.2(0.3)∗∗∗ 1.1(0.3)∗

Summer -2.3(0.3)∗∗ 5.8(0.4)∗∗∗ -0.2(0.1) 0.1(0.1)
Fall 3.5(0.6)∗∗ -0.9(0.2)∗ -1.3(0.3)∗ 2.6(0.2)∗∗∗

Winter 0.5(0.6) 4.0(0.5)∗∗∗ 2.9(0.4)∗∗∗ 5.7(0.3)∗∗∗

Average 1.7(0.3)∗∗ 3.2(0.2)∗∗∗ 1.2(0.2)∗∗ 2.4(0.1)∗∗∗

NO2

Spring -15.0(0.5)∗∗∗ -14.6(0.7)∗∗∗ -10.2(0.6)∗∗∗ -3.4(0.6)∗∗

Summer -20.8(0.4)∗∗∗ -21.8(0.4)∗∗∗ -16.2(0.3)∗∗∗ -14.2(0.4)∗∗∗

Fall -9.3(0.7)∗∗∗ -14.9(0.7)∗∗∗ -14.1(0.7)∗∗∗ -10.0(0.7)∗∗∗

Winter -3.2(0.5)∗∗ 4.1(0.4)∗∗∗ 1.0(0.5) -4.0(0.5)∗∗

Average -12.1(0.3)∗∗∗ -11.8(0.3)∗∗∗ -9.9(0.3)∗∗∗ -7.9(0.3)∗∗∗

8-hour O3

Spring 25.8(1.5)∗∗∗ 18.9(1.0)∗∗∗ 2.5(0.9)∗ 22.9(1.1)∗∗∗

Summer -13.8(1.6)∗∗∗ 6.9(1.7)∗ 6.4(1.2)∗ 16.2(1.5)∗∗∗

Fall 4.6(1.2)∗ 2.9(1.0)∗ 6.9(1.3)∗ 10.9(1.1)∗∗∗

Winter -4.5(0.5)∗∗∗ -0.7(0.6) 9.5(0.7)∗∗∗ 4.9(0.6)∗∗∗

Average 3.0(0.6)∗ 7.0(0.6)∗∗∗ 6.3(0.6)∗∗∗ 13.7(0.6)∗∗∗

The number of ∗ represents the level of significance for testing the increase or decrease of the annual change
between two consecutive years ( ∗: 10−9 ≤ p-value< 10−2; ∗∗: 10−9 ≤ p-value< 10−16; ∗∗∗: p-value< 10−16).

Table 2: The average absolute differences (standard errors, μg/m3) between the moving average, trend
analysis and our proposed method for different pollutants of Central and Southern areas in each season.

Season Method
Central Southern

PM2.5 SO2 NO2 8-hour O3 PM2.5 SO2 NO2 8-hour O3

Spring
Moving Average 4.3(1.0) 4.0(0.4) 1.8(0.4) 4.1(0.8) 2.8(1.3) 4.2(0.4) 3.6(0.5) 6.3(1.2)
Trend Analysis 1.0(0.9) 0.4(0.3) 0.8(0.4) 4.6(0.9) 2.5(1.8) 0.7(0.5) 1.6(0.6) 4.6(1.4)

Summer
Moving Average 3.3(0.8) 1.7(0.1) 1.8(0.3) 7.8(1.2) 3.1(0.9) 2.2(0.2) 1.1(0.3) 12.9(1.6)
Trend Analysis 3.8(0.8) 0.1(0.2) 0.9(0.3) 3.0(1.3) 3.4(1.2) 0.1(0.2) 0.6(0.3) 1.4(3.2)

Fall
Moving Average 5.5(1.5) 2.5(0.2) 1.9(0.5) 1.6(0.8) 6.8(2.3) 3.4(0.3) 2.3(0.6) 3.5(1.2)
Trend Analysis 2.0(1.3) 0.6(0.3) 0.9(0.5) 2.0(1.0) 5.4(2.4) 0.6(0.6) 2.1(0.7) 3.3(1.5)

Winter
Moving Average 6.0(1.2) 7.8(0.4) 2.4(0.4) 1.7(0.3) 10.5(2.2) 6.1(0.6) 3.5(0.6) 3.1(0.6)
Trend Analysis 6.9(1.3) 1.7(0.3) 4.5(0.5) 2.4(0.4) 11.3(1.9) 2.1(0.4) 3.3(0.6) 2.0(0.6)

Average
Moving Average 4.8(0.6) 4.0(0.2) 2.0(0.2) 3.8(0.4) 5.8(0.9) 4.0(0.3) 2.6(0.3) 6.5(0.6)
Trend Analysis 3.4(0.6) 0.7(0.1) 1.3(0.2) 3.0(0.4) 5.6(1.0) 0.9(0.2) 1.9(0.3) 2.8(1.4)
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Supporting Information for Regional

Air-Quality Assessment That Adjusts for

Meteorological Confounding

by Shuyi Zhang, Song Xi Chen∗, Bin Guo, Hengfang Wang, Wei Lin

Appendix A: Assumptions

We outline the conditions assumed in our study here. A strictly stationary process ξξξt is said to

be α-mixing if its α-mixing coefficients αξ(k) satisfies limk→∞ αξ(k) = 0, where the definition of

αξ(k) can be found in Bosq (1998). To derive the asymptotic properties in Section 4, we impose

the following regularity conditions.

Assumption 1. For any j = 1, . . . , 4, i = 1, . . . , Aj and sss ∈ R, the latent emission variables

{UUU ijt(sss)}
nij

t=1 are identically distributed.

Assumption 2. For the meteorological covariates XXX ijt(sss), we consider the following assumptions.

(i) For any j = 1, . . . , 4 and i = 1, . . . , Aj, [Xijt = {XXX ijt(sss1)T,XXX ijt(sss2)T, · · · ,XXX ijt(sssL)T}T]
nij

t=1

is temporally strictly stationary and temporally α-mixing where there exist a1 > 0 and a2 > 1

such that the α-mixing coefficient of {Xijt}
nij

t=1 satisfies αX(k) ≤ a1k
−a2 for any k ≥ 0; For any

j = 1, . . . , 4, i = 1, . . . , Aj and sss ∈ R, (ii) fij(xxx,sss) is v-th order continuously differentiable

everywhere in xxx. Moreover, there exist c1, c2 > 0 such that c1 < infx∈supp{fij(xxx,sss)} fij(xxx,sss) ≤

supx∈supp{fij(xxx,sss)} fij(xxx,sss) < c2, where supp{fij(xxx,sss)} is the support of fij(xxx,sss) which is a closed

1
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set; (iii) The joint probability density function qij,k(xxx,xxx
′;sss,sss′) is v-th order continuously differ-

entiable everywhere in xxx and xxx′. Moreover, for any r = 0, 1, . . . , v − 1, q = 1, . . . , d and

xxx,xxx′ ∈ Rd, n−1
ij

∑nij

k=1 ∂
rqij,k(xxx,xxx

′;sss,sss′)/∂xrq = O(1) as nij → ∞; (iv) The conditional den-

sity XXX ijt(sss) given XXX ijt′(sss
′) exists and is finite. Under the strict stationarity condition, we de-

note the conditional density by pij,t−t′(xxx|xxx′;sss,sss′). Assume pij,t−t′(xxx|xxx′;sss,sss′) is v-th order continu-

ously differentiable everywhere in xxx in xxx′. Moreover, for any r = 0, 1, . . . , v − 1, q = 1, . . . , d

and xxx,xxx′ ∈ Rd, n−1
ij

∑nij

k=1 ∂
rpij,k(xxx|xxx′;sss|sss′)/∂xrq = O(1) as nij → ∞; (v) Define ‖Xijt‖r :=

supsss∈W,k=1,...,d ‖Xijt,k(sss)‖r where ‖Xijt,k(sss)‖r = {E|Xijt,k(sss)|r}1/r for any k = 1, . . . , d. Assume

that there exists a positive integer r > 2 such that ‖Xijt‖r < +∞; (vi) For any r = 0, 1, . . . , v− 1,

q = 1, . . . , d and xxx,xxx′ ∈ Rd, ∂rpij,k(xxx|xxx′;sss|sss′)/∂xrq → ∂rfij(xxx,sss)/∂x
r
q as k → +∞.

Assumption 3. For any j = 1, . . . , 4, i = 1, . . . , Aj and sss ∈ R, we assume (i) mij(xxx,sss) is v-th

order continuously differentiable everywhere in xxx; (ii) for any a = 1, . . . , Aj, sss
′ ∈ W, r = 0, 1, . . . , v

and q = 1, . . . , d,
∫
faj(xxx,sss

′)∂rmij(xxx,sss)/∂x
r
qdxxx exists and is finite.

For any j = 1, . . . , 4 and i = 1, . . . , Aj, define Fijt = σ(Xijτ , 0 ≤ τ ≤ t) = σ{XXX ijτ (sss), sss ∈

R, 0 ≤ τ ≤ t} and Fij = σ(Xijt, t ≥ 0) = σ{XXX ijt(sss), sss ∈ R, t ≥ 0} as the σ-algebras generated by

{Xijt, 0 ≤ τ ≤ t} and {Xijt, t ≥ 0}, respectively.

Assumption 4. For any i1 6= i2, Fi1j and Fi2j are independent.

Assumption 5. For any j = 1, . . . , 4, a, i = 1, . . . , Aj, sss
′
1, sss
′
2 ∈ W and sss1, sss2 ∈ R, we assume∑∞

k=−∞ |Ca
ii,j,k(sss

′
1, sss
′
2;sss1, sss2)| < +∞.

Assumption 6. For the standardized residual eijt(sss), we consider the following assumptions. (i)

For any j = 1, . . . , 4 and i = 1, . . . , Aj, [eeeijt = {eijt(sss1), . . . , eijt(sssL)}]nij

t=1 is temporally strictly

stationary and temporally α-mixing where there exist b1 > 0 and b2 > 1 such that the α-mixing

coefficient of {eeeijt}
nij

t=1 satisfies αe(k) ≤ b1k
−b2 for any k ≥ 0; (ii) E(eeeijt|Fijt) = 0; (iii) For any

sss,sss′ ∈ R,
∑+∞

k=0 |ρ(k;sss,sss′)| < +∞.

2
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Assumption 7. For the kernel function K(·) in estimating mij(xxx,sss), we consider the following

assumptions. (i) K(·) is d-dimensional satisfying
∫
K(uuu)duuu = 1; (ii) K(·) is radially symmetric

such that for any uuu1 = (u1,1, · · · , u1,d)
T and uuu2 = (u2,1, · · · , u2,d)

T if
∑d

i=1 u
2
1,i =

∑d
i=1 u

2
2,i, we

have K(uuu1) = K(uuu2); (iii) K(·) is of v(v ≥ 2)-th order such that for any l ∈ Z+ and rrr =

(r1, r2, · · · , rd)T ∈ N = {0, 1, . . .} satisfying
∑d

i=1 ri = l, we have∫∫
· · ·
∫
ur11 u

r2
2 . . . urdd K(u1, u2, . . . , ud)du1du2 . . . dud

 = 0, if 1 ≤ l < v,

6= 0, if l = v.

Since K(·) is radially symmetric, we can define its v-th order moment by

µv(K) =

∫
· · ·
∫
· · ·
∫
uvqK(u1, . . . , uq, . . . , ud)du1 . . . duq . . . dud, for any q = 1, . . . , d.

Assumption 8. The bandwidths HHH = (h1, . . . , hd)
T satisfies as nij →∞,

d∑
q=1

|hq| → 0, nij

d∏
q=1

hvq → +∞, nij
d∏
q=1

h2v
q → 0.

Assumption 9. As nij →∞, supi,j

∣∣∣∣nij (∑Aj

a=1 naj

)−1

− A−1
j

∣∣∣∣ = o
(∑d

q=1 h
v
q

)
.

Appendix B: Technical details

We consider the case where the covariates in XXX ijt(sss) are all continuous. Thus

m̂ij(xxx,sss) =

∑nij

t=1KHHH{xxx−XXX ijt(sss)}Yijt(sss)∑nij

t=1KHHH{xxx−XXX ijt(sss)}
and

µ̂ij(sss) =

∫
m̂ij(xxx,sss)dF̂.j(xxx) = S−1

 Aj∑
a=1

naj

−1
Aj∑
a=1

∑
sss′∈W

naj∑
t=1

m̂ij{XXXajt(sss
′), sss}.

B.1. Bias and variance of µ̂ij(sss)

Define the following quantities related to the bias of µ̂ij(sss),

b
(1)
ij,a(sss;nij) =

µv(K)

v!S

d∑
q=1

{∑
sss′∈W

v∑
r=1

(
v

r

)∫
faj(xxx,sss

′)

fij(xxx,sss)

∂rmij(xxx,sss)

∂xrq

∂v−rfij(xxx,sss)

∂xv−rq
dxxx

}
hvq and

b
(2)
ij,a(sss;nij) =

µv(K)

v!Snij

d∑
q=1

∑
sss′∈W

v∑
r=1

nij−1∑
k=−(nij−1)

(
v

r

)∫
faj(xxx,sss

′)

fij(xxx,sss)

∂rmij(xxx,sss)

∂xrq

∂v−rpij,k(xxx
′|xxx;sss|sss′)

∂(x′q)
v−r

∣∣∣∣∣
xxx′=xxx

dxxx

hvq .
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The following two quantities are related to the variance of µ̂ij(sss),

γij(sss1, sss2;nij) = n−1
ij

nij−1∑
k=−nij+1

ρ(|k|;sss1, sss2)

(
1− |k|

nij

)∫∫
σij(xxx1, sss1)σij(xxx2, sss2)

× qij,k(xxx1,xxx2;sss1, sss2)
f·j(xxx1)f·j(xxx2)

fij(xxx1, sss1)fij(xxx2, sss2)
dxxx1dxxx2 and

λii,j(sss1, sss2;nij) = n−1
ij S

−2A−2
j

∑
sss′1,sss

′
2∈W

Aj∑
a=1

naj−1∑
k=−naj+1

(
1− |k|

naj

)
Ca
ii,j,k(sss

′
1, sss
′
2;sss1, sss2).

Theorem 1. Suppose Assumptions 1, 2(ii)(iii)(iv)(v), 3, 4, 6(ii), 7(i)(ii)(iii) and 9 hold. Then

for any j = 1, . . . , 4, i = 1, . . . , Aj and sss ∈ R, the bias and variance of µ̂ij(sss) are

Bias{µ̂ij(sss)} = A−1
j

{∑
a6=i

b
(1)
ij,a(sss;nij) + b

(2)
ij,i(sss;nij)

}
{1 + o(1)} and

Var{µ̂ij(sss)} = {γij(sss,sss;nij) + λii,j(sss,sss;nij)}{1 + o(1)},

as nij →∞, respectively. If Assumption 2(vi) holds besides the above assumptions,

Bias{µ̂ij(sss)} =

A−1
j

Aj∑
a=1

δab
(1)
ij,a(sss;nij)

 {1 + o(1)}.

as nij →∞, where δa = I(a 6= i) + 2I(a = i). Moreover, in both of the above two cases, we have

Bias{µ̂ij(sss)} = O
(∑d

q=1 h
v
q

)
and Var{µ̂ij(sss)} = O(n−1

ij ) as nij →∞.

Proof. (1.1) Derivation of the bias of µ̂ij(sss).

Deriving the first moment of µ̂ij(sss) can be attributed to calculating that of m̂ij(XXXajt′(sss
′), sss),

of which the conditional expectation given XXXajt′(sss
′) should be considered. First, we notice that

under the assumptions in Theorem 1, b
(1)
ij,a(sss;nij) = O

(∑d
q=1 h

v
q

)
and b

(2)
ij,a(sss;nij) = O

(∑d
q=1 h

v
q

)
.

According to the correlation betweenXXX ijt(sss) andXXXajt′(sss
′), two scenarios are considered as follows.

Case (1.1.1). If a 6= i, since Fij and Faj are independent, we have, as nij →∞,

E[m̂ij{XXXajt′(sss
′), sss}] = E(E[m̂ij{XXXajt′(sss

′), sss}|XXXajt′(sss
′)]) = E[mij{XXXajt′(sss

′), sss}]

+
µv(K)

v!

d∑
q=1

{
v∑
r=1

(
v

r

)∫
faj(xxx,sss

′)

fij(xxx,sss)

∂rmij(xxx,sss)

∂xxxrq

∂v−rfij(xxx,sss)

∂xxxv−rq

dxxx

}
hvq + o

(
d∑
q=1

hq

)
.

Case (1.1.2). If a = i, XXX ijt(sss) and XXXajt′(sss
′) are spatially and temporally correlated. Under

4
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Assumption 2, it can be derived that as nij →∞,

E[m̂ij{XXX ijt′(sss
′), sss}] = E(E[m̂ij{XXX ijt′(sss

′), sss}|XXX ijt′(sss
′)]) = E[mij{XXX ijt′(sss

′), sss}]

+
µv(K)

v!nij

d∑
q=1

{
nij∑
t=1

v∑
r=1

(
v

r

)∫
fij(xxx,sss

′)

fij(xxx,sss)

∂rmij(xxx,sss)

∂xrq

∂v−rpij,t−t′(xxx
′|xxx;sss|sss′)

∂(x′q)
v−r

∣∣∣∣∣
xxx′=xxx

dxxx

}
hvq + o

(
d∑
q=1

hq

)
.

Moreover, under Assumption 9, as nij →∞,

S−1

 Aj∑
a=1

naj

−1
Aj∑
a=1

∑
sss′∈W

naj∑
t′=1

E[mij{XXXajt′(sss
′), sss}]− µij(sss) = o(hv1 + · · ·+ hvd). (A.1)

According to the results in Cases (1.1.1), (1.1.2) and Equation (A.1), we can obtain Bias{µ̂ij(sss)} =

A−1
j

{∑
a6=i b

(1)
ij,a(sss;nij) + b

(2)
ij,i(sss;nij)

}
+o
(∑d

q=1 h
v
q

)
as nij →∞. Furthermore, under Assumption

2(vi), Bias{µ̂ij(sss)} = A−1
j

∑Aj

a=1 δab
(1)
ij,a(sss;nij) + o

(∑d
q=1 h

v
q

)
by the Stolz-Cesàro Theorem.

(1.2) Derivation of the variance of µ̂ij(sss).

First note that under the assumptions in Theorem 1, γij(sss,sss;nij) = O(n−1
ij ) and λii,j(sss,sss;nij) =

O(n−1
ij ). To derive the variance of µ̂ij(sss), we start with the following decomposition,

µ̂ij(sss) =

∫
m̂ij(xxx,sss)dF̂.j(xxx) = µij(sss) + Tij,1(sss) + Tij,2(sss) + Tij,3(sss), (A.2)

where

Tij,1(sss) =

∫
{m̂ij(xxx,sss)−mij(xxx,sss)}dF.j(xxx), Tij,2(sss) =

∫
mij(xxx,sss)d{F̂.j(xxx)− F.j(xxx)} and

Tij,3(sss) =

∫
{m̂ij(xxx,sss)−mij(xxx,sss)}d{F̂.j(xxx)− F.j(xxx)}.

It can be shown that Var{µ̂ij(sss)} = [Var{Tij,1(sss)} + Var{Tij,2(sss)} + 2Cov{Tij,1(sss), Tij,2(sss)}]{1 +

o(1)}. We first deal with Var{Tij,1(sss)}. Since f̂ij(xxx,sss) is a consistent estimator of fij(xxx,sss), it can

be derived that, as nij →∞,

Tij,1(sss) = {T (1)
ij,1(sss) + T

(2)
ij,1(sss)}{1 + oP (1)}, (A.3)

where

T
(1)
ij,1(sss) =

1

nij

nij∑
t=1

∫
1

fij(xxx,sss)
KHHH{xxx−XXX ijt(sss)}[mij{XXX ijt(sss), sss} −mij(xxx,sss)]f·j(xxx)dx and

T
(2)
ij,1(sss) =

1

nij

nij∑
t=1

σij{XXX ijt(sss), sss}eijt(sss)
∫

1

fij(xxx,sss)
KHHH{xxx−XXX ijt(sss)}f·j(xxx)dx.

By some algebra, we have Var{T (1)
ij,1(sss)} = O

(∑d
q=1 h

2v
q

)
and Var{T (2)

ij,1(sss)} = γij(sss,sss;nij){1+o(1)}.
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Then as nij →∞,

Var{Tij,1(sss)} = γij(sss,sss;nij) + o(n−1
ij ).

For the second term Tij,2(sss) =
∫
mij(xxx,sss)d{F̂.j(xxx)− F.j(xxx)}, it can be shown that

Tij,2(sss) = S−1

Aj∑
a=1

∑
sss′∈W

[
ω̂aj
naj

naj∑
t=1

mij{XXXajt(sss
′), sss} − A−1

j

∫
mij(xxx,sss)dFaj(xxx,sss

′)

]
. (A.4)

By deriving E{Tij,2(sss)} and E{T 2
ij,2(sss)} respectively, we have as nij →∞,

Var{Tij,2(sss)} = λii,j(sss,sss;nij) + o(n−1
ij ).

The covariance of Tij,1(sss) and Tij,2(sss) satisfies Cov{Tij,1(sss), Tij,2(sss)} = O
(∑d

q=1 h
v
q

)
. Thus the

variance of µ̂ij(sss) is Var{µ̂ij(sss)} = γij(sss,sss;nij) + λii,j(sss,sss;nij) + o(n−1
ij ) as nij →∞.

B.2. Technical details for Theorem 1

Besides the quantities defined in the main text, we define

γij,k(sss1, sss2) = ρ(|k|;sss1, sss2)

∫∫
σij(xxx1, sss1)σij(xxx2, sss2)

qij,k(xxx1,xxx2;sss1, sss2)

fij(xxx1, sss1)fij(xxx2, sss2)
dF.j(xxx1)dF.j(xxx2).

Aggregating γij,k(sss1, sss2) over k, we can obtain γij(sss1, sss2) =
∑+∞

k=−∞ γij,k(sss1, sss2).

B.2.1. Asymptotic normality of µ̂ij(sss)

Proof. To derive the asymptotic normality of µ̂ij(sss), we still consider the decomposition in (A.2),

(A.3) and (A.4). Notice that Tij,3(sss) = oP{Tij,1(sss) + Tij,2(sss)}. We re-decompose µ̂ij(sss) by

µ̂ij(sss) = {T (1)
ij (sss) + T

(2)
ij (sss) + T

(3)
ij (sss)}{1 + oP (1)}, (A.5)

as nij →∞, where

T
(1)
ij (sss) =

1

nij

nij∑
t=1

∫
KHHH{xxx−XXX ijt(sss)}[mij{XXX ijt(sss), sss} −mij(xxx,sss)]

f·j(xxx)

fij(xxx,sss)
dxxx,

T
(2)
ij (sss) =

1

nij

nij∑
t=1

[
σij{XXX ijt(sss), sss}eijt(sss)

∫
KHHH{xxx−XXX ijt(sss)}

fij(xxx,sss)
dF.j(xxx) +

∑
sss′∈W

mij{XXX ijt(sss
′), sss}

SAj

]
and

T
(3)
ij (sss) = S−1A−1

j

∑
a6=i

1

naj

naj∑
t=1

∑
sss′∈W

mij{XXXajt(sss
′), sss}.

6
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It can be easily obtained that Var{T (1)
ij (sss)} = o

(
n−1
ij

∑d
q=1 h

v
q

)
. Thus as nij →∞,

√
nij[T

(1)
ij (sss)− E{T (1)

ij (sss)}] P→ 0.

To obtain the asymptotic property of T
(2)
ij (sss), define ςijt(sss) = ςijt,1(sss) + ςijt,2(sss) where ςijt,1(sss) =

σij{XXX ijt(sss), sss}eijt(sss)
∫ KHHH{xxx−XXXijt(sss)}

fij(xxx,sss)
dF.j(xxx) and ςijt,2(sss) = S−1A−1

j

∑
sss′∈W mij{XXX ijt(sss

′), sss}. Then

T
(2)
ij (sss) = n−1

ij

∑nij

t=1 ςijt(sss). Since E(eeeijt|Fijt) = 0, we have for any t1 and t2, Cov{ςijt1(sss), ςijt2(sss)} =

Cov{ςijt1,1(sss), ςijt2,1(sss)}+Cov{ςijt1,2(sss), ςijt2,2(sss)}. It can be shown that Cov {ςijt1,1(sss), ςij,t2,1(sss)} =

γij,t1−t2(sss1, sss2). Moreover, we have Cov{ςijt1,2(sss), ςijt2,2(sss)} = S−2A−2
j

∑
sss′1,sss

′
2∈W

Ci
ii,j,t1−t2(sss

′
1, sss
′
2;sss,sss).

Thus the long-run covariance function of {ςςς ijt(sss)}
nij

t=1 is σ
(2)
ij (sss) =

∑∞
k=−∞Cov{ςij0(sss), ςijk(sss)} =

γij(sss,sss)+S−2A−2
j

∑+∞
k=−∞

∑
sss′1,sss

′
2∈W

Ci
ii,j,k(sss

′
1, sss
′
2;sss,sss). Then by the central limit theorem for weakly

dependent time series [Bosq (1998)], as nij →∞,

√
nij[T

(2)
ij (sss)− E{T (2)

ij (sss)}] d→ N(0, σ
(2)
ij (sss)).

Similarly, it can be shown that, as nij →∞,

√
nij[T

(3)
ij (sss)− E{T (3)

ij (sss)}] d→ N(0, σ
(3)
ij (sss)),

where σ
(3)
ij (sss) = S−2A−2

j

∑
a6=i
∑∞

k=−∞
∑

sss′1,sss
′
2∈W

Ca
ii,j,k(sss

′
1, sss
′
2;sss,sss). Since T

(3)
ij (sss) is independent of

T
(1)
ij (sss)+T

(2)
ij (sss) and Bias{µ̂ij(sss)} = O

(∑d
q=1 h

v
q

)
, it can be shown by the Slutsky’s Theorem that

√
nij{µ̂ij(sss)− µij(sss)}

d→ N(0, σ̃2
ij(sss,sss)) as nij →∞, where σ̃2

ij(sss,sss) = γij(sss,sss) + λii,j(sss,sss).

B.2.2. Asymptotic normality of µ̂ij(A)

Proof. By (A.5) in the proof of asymptotic normality of µ̂ij(sss), as nij →∞,∑
sss∈A

µ̂ij(sss) =
∑
sss∈A

{T (1)
ij (sss) + T

(2)
ij (sss) + T

(3)
ij (sss)}{1 + oP (1)},

where T
(1)
ij (sss), T

(2)
ij (sss) and T

(3)
ij (sss) are defined in (A.5). Since Var{T (1)

ij (sss)} = o
(
n−1
ij

∑d
q=1 h

v
q

)
,

√
nij

[∑
sss∈A

T
(1)
ij (sss)− E

{∑
sss∈A

T
(1)
ij (sss)

}]
P→ 0, (A.6)

as nij →∞. Similarly with the proof of Theorem 1, we can obtain that as nij →∞,

√
nij

[∑
sss∈A

T
(2)
ij (sss)− E

{∑
sss∈A

T
(2)
ij (sss)

}]
d→ N

(
0,

∞∑
k=−∞

Ξ
(2)
ij,k

)
and (A.7)

7
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√
nij

[∑
sss∈A

T
(3)
ij (sss)− E

{∑
sss∈A

T
(3)
ij (sss)

}]
d→ N

(
0,

∞∑
k=−∞

Ξ
(3)
ij,k

)
, (A.8)

where Ξ
(2)
ij,k =

∑
sss1,sss2∈A γij,k(sss1, sss2) + S−2A−2

j

∑
sss1,sss2∈A

∑
sss′1,sss

′
2∈W

Ci
ii,j,k(sss

′
1, sss
′
2;sss1, sss2) and Ξ

(3)
ij,k =

S−2A−2
j

∑
a6=i
∑

sss1,sss2∈A
∑

sss′1,sss
′
2∈W

Ca
ii,j,k(sss

′
1, sss
′
2;sss1, sss2). By the Slutsky’s Theorem, as nij →∞,

√
nij

[∑
sss∈A

µ̂ij(sss)− E

{∑
sss∈A

µ̂ij(sss)

}]
d→ N(0, σ̃0

ij(A)),

where σ̃0
ij(A) =

∑
sss1,sss2∈A{γij(sss1, sss2) + λii,j(sss1, sss2)}. Moreover, Bias{µ̂ij(A)} = O

(∑d
q=1 h

v
q

)
as

nij → ∞. Thus we can directly obtain the asymptotic normality of µ̂ij(A) in Theorem 1 by the

continuous mapping theorem.

B.3. Technical details for Theorem 2

To extend the definition of λi1i2,j(sss1, sss2), we define φai1i2,j,k(sss1, sss2) = S−2
∑

sss′1,sss
′
2∈W
{Ca

i1i1,j,k
(sss′1, sss

′
2;sss1, sss2)

+ Ca
i2i2,j,k

(sss′1, sss
′
2;sss1, sss2)− Ca

i1i2,j,k
(sss′1, sss

′
2;sss1, sss2)− Ca

i2i1,j,k
(sss′1, sss

′
2;sss1, sss2)}.

B.3.1. Asymptotic normality of µ̂i2j(A)− µ̂i1j(A)

Proof. By (A.5) in the proof of Theorem 1, for any i1 6= i2, as nij →∞,∑
sss∈A

{µ̂i2j(sss)− µ̂i1j(sss)} =
∑
sss∈A

{
T

(1)
i2i1,j

(sss) + T
(2)
i2i1,j

(sss)− T (2)
i1i2,j

(sss) + T
(3)
i2i1,j

(sss)
}
{1 + oP (1)},

where

T
(1)
i2i1,j

(sss) = T
(1)
i2j

(sss)− T (1)
i1j

(sss), T
(2)
i2i1,j

(sss) = T
(2)
i2j

(sss)− S−1A−1
j n−1

i2j

ni2j∑
t=1

∑
sss′∈W

mi1j{XXX i2jt(sss
′), sss} and

T
(3)
i2i1,j

(sss) = S−1A−1
j

∑
a6=i1,i2

1

naj

naj∑
t=1

∑
sss′∈W

[mi2j{XXXajt(sss
′), sss} −mi1j{XXXajt(sss

′), sss}].

As shown in (A.6) and (A.8), we have, as ni1j, ni2j → +∞,

√
ni1j

[∑
sss∈A

T
(1)
i2i1,j

(sss)− E

{∑
sss∈A

T
(1)
i2i1,j

(sss)

}]
P→ 0 and

√
ni1j

[∑
sss∈A

T
(3)
i2i1,j

(sss)− E

{∑
sss∈A

T
(3)
i2i1,j

(sss)

}]
d→ N

(
0,

∞∑
k=−∞

Ω
(3)
i2i1,j,k

)
, (A.9)

8
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where Ω
(3)
i2i1,j,k

= A−2
j

∑
a6=i1,i2

∑
sss1,sss2∈A φ

a
i2i1,j,k

(sss1, sss2). Similar with (A.7), we have as ni2j → +∞,

√
ni1j

[∑
sss∈A

T
(2)
i2i1,j

(sss)− E

{∑
sss∈A

T
(2)
i2i1,j

(sss)

}]
d→ N

(
0,

∞∑
k=−∞

Ω
(2)
i2i1,j,k

)
,

where Ω
(2)
i2i1,j,k

=
∑

sss1,sss2∈A γi2j,k(sss1, sss2) + A−2
j

∑
sss1,sss2∈A φ

i2
i2i1,j,k

(sss1, sss2). By the Slutsky’s Theorem,

√
ni1j

(∑
sss∈A

{µ̂i2j(sss)− µ̂i1j(sss)} − E

[∑
sss∈A

{µ̂i2j(sss)− µ̂i1j(sss)}

])
d→ N(0, σ̃0

i2i1,j
(A)),

ni1j, ni2j → +∞, where σ̃0
i2i1,j

(A) =
∑

sss1,sss2∈A{γi2j(sss1, sss2)+φi2i1,j(sss1, sss2)}. Moreover, Bias{µ̂i2j(A)−

µ̂i1j(A)} = O
(∑d

q=1 h
v
q

)
as ni1j, ni2j → +∞. Then the asymptotic normality of µ̂i2j(A)− µ̂i1j(A)

can be obtained by the continuous mapping theorem.

B.3.2. Asymptotic normality of µ̂ij(A)− µ̂ij(B)

Proof. For two regions A and B such that A∩B = ∅, let M1 = |A|, M2 = |B| and M = M1 +M2.

Without loss of generality, let A = {sss1, · · · , sssM1} and B = {sssM1+1, · · · , sssM}. It can be shown that µ̂ij(A)

µ̂ij(B)

 =

 |A|−1
∑

sss∈A µ̂ij(sss)

|B|−1
∑

s∈B µ̂ij(sss)

 =

 |A|−1111M1 000

000 |B|−1111M2


T


µ̂ij(sss1)

...

µ̂ij(sssM)

 =: ΓΓΓΓΓΓΓΓΓµ̂µµij.

Similar to the proof in Theorem 1, we have as nij →∞,

√
nij
(
µ̂µµij − µµµij

) d→ N(000, Σ̃ΣΣij(A ∪ B)).

By the continuous mapping theorem, as nij →∞,

√
nij[{µ̂ij(A), µ̂ij(B)}T − {µij(A), µij(B)}T]

d→ N(000,ΓΓΓΣ̃ΣΣij(A ∪ B)ΓΓΓT).

Let ΓΓΓΣ̃ΣΣij(A ∪ B)ΓΓΓT =

 θ11 θ12

θ21 θ22

. Then we have

θ11 = (|A|−1111T

|A|,000
T)Σ̃ΣΣij(A ∪ B)(|A|−1111T

|A|,000
T)T = σ̃2

ij(A,A),

θ12 = (|A|−1111T

|A|,000
T)Σ̃ΣΣij(A ∪ B)(|A|−1111T

|A|,000
T)T = σ̃2

ij(A,B),

θ21 = (000T, |B|−1111T

|B|)Σ̃ΣΣij(A ∪ B)(000T, |B|−1111T

|B|)
T = σ̃2

ij(B,A) and

θ22 = (000T, |B|−1111T

|B|)Σ̃ΣΣij(A ∪ B)(000T, |B|−1111T

|B|)
T = σ̃2

ij(B,B),

9
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where 111T

|A| = (1, 1, · · · , 1)|A|×1. Since σ̃2
ij(B,A) = σ̃2

ij(A,B), by the Cramér-Wold Device,

√
nij[{µ̂ij(A)− µ̂ij(B)} − {µij(A)− µij(B)}] d→ N(0, σ̃2

ij(A− B)),

as nij →∞, where σ̃2
ij(A− B) = σ̃2

ij(A,A)− 2σ̃2
ij(A,B) + σ̃2

ij(B,B).

Appendix C: Simulation results

In this section, we carry out the simulation study which is designed to evaluate the empirical

performance of the proposed estimation of the air quality measures via spatial and temporal

adjustment approach. The simulation setting is constructed to reflect the real data situation in

the study region around Beijing to make the simulation more relevant.

The meteorological data used in the simulation were created by resembling those of the observed

data in the seven winters when the air pollution is the severest in Beijing from 2010 to 2016 over

all the weather stations. We simulated meteorological covariates via the data blocking method.

Two sample sizes T = 1080, 2160 are considered, respectively. As our focus was in the winter

season, we set the season index j = 4 throughout this section. At a sample size T , the original

meteorological time series {XXX i4t(sss)}ni4
t=1 in year i at site s were partitioned into blocks of equal

length l = 12, from which we sampled T/l data blocks independently with replacement with the

equal probability so that the dependence structure of the original time series can be retained.

A simulated meteorological realization of length T was obtained by connecting the T/l sampled

blocks together, which gives rise to the one simulated meteorological series {XXX i4t(sss)}Tt=1 in year

i at site s. The simulated meteorological variables for Years 2010 - 2014 are only used for the

construction of the meteorological baseline, while those for Years 2015 and 2016 are both for the

baseline and generation of the simulated air pollution data.

After simulating the meteorological variables, we generated the PM2.5 data for two winters

(Winters I and II for Year 2015 and 2016, respectively) over all the 28 air quality monitoring sites

as follows. The simulated regression model (2.2) for Winters I and II was the following model

10
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m{xxx;βββ(w,sss)} with the wind and site specific coefficients βββ(w,sss) = {β0(w,sss), · · · , β6(w,sss)}T:

m{xxx;βββ(w,sss)} = β0(w,sss) +
4∑
r=1

m(r){xr;βββ(w,sss)} with

m(1){x1;βββ(w,sss)} = β1(w,sss)x1 + β2(w,sss)x2
1, m

(2){x2;βββ(w,sss)} = β3(w,sss)x2 + β4(w,sss)x2
2,

m(3){x3;βββ(w,sss)} = β5(w,sss)x3 and m(4){x4;βββ(w,sss)} = β6(w,sss) log x4. (A.10)

where xxx = (xxx1,xxx2,xxx3,xxx4, w)T denotes a vector of dew point, temperature, pressure, cumulative

wind speed and wind direction. We did not consider the cumulative precipitation as a covariate

as Beijing hardly has precipitation in winter.

The parameter values were assigned based on the empirical observations in the winters of 2015

and 2016 respectively. We first obtained a set of baseline parameters βββ∗(w,sss) by fitting Model

(A.10) with the standardized response and covariates based on the real observations in winter 2015

at six sites: Aotizhongxin, Fangshan, Guanyuan, Shunyi, U.S. Embassy and Yizhuang, respec-

tively, denoted as S = {sss1, sss2, · · · , sss6}. These sites offer a good spatial representation of the study

region. To reduce the noise in the estimated parameters and to capture consistent regional trends,

we averaged the estimated parameters over the six sites to attain βββ∗(w) = 6−1
∑

sss∈S βββ
∗(w,sss),

which offers the baseline parameters under a wind direction w for the standardized version of

(A.10). Table S2 provides the specific values of βββ∗(w).

With the baseline parameter βββ∗(w), we attained site-specific parameters βββI(w,sss) for Winter

I by transforming the standardized model with βββ∗(w) back to the non-standardized version with

site-specific means and standard deviations of the response and the covariates respectively. Let

VVV i4t(sss) = {Di4t(sss), D
2
i4t(sss), Ti4t(sss), T

2
i4t(sss), Pi4t(sss), logCi4t(sss)}T be the vector of the observed data

containing all the continuous covariates in Model (A.10). Let βββk(w,sss) = {βk,0(w,sss), β̃ββk(w,sss)} and

βββ∗(w) = {β∗0(w), β̃ββ
∗
(w)}. Then Model (A.10) can be re-written as

mk4{XXX i4t(sss), sss} = βk,0{Wi4t(sss), sss}+ VVV T

i4t(sss)β̃ββk{Wi4t(sss), sss},

where (i = 2015, k = I) and (i = 2016, k = II) represent Winter I and II for Year 2015 and

2016, respectively. Let µµµVi4(sss) and µYi4(sss) be the means of VVV i4t(sss) and Yi4t(sss), respectively. The

standard deviation of Yi4t(sss) is denoted by φYi4(sss), while that of the l-th element of VVV i4t(sss) is

11
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denoted by φVi4,l(sss). Let ΦΦΦV
i4(sss) = diag{φVi4,1(sss), φVi4,2(sss), · · · , φVi4,6(sss)} be a diagonal matrix with

diagonal elements φVi4,1(sss), φVi4,2(sss), · · · , φVi4,6(sss). For (i = 2015, k = I), we generated the regression

coefficients βββ(w,sss) as follows,

βk,0(w,sss) = β∗
0(w) + µY

i4(sss)/φYi4(sss)− {µµµV
i4(sss)}T{ΦΦΦV

i4(sss)}−1β̃ββ
∗
(w) and β̃ββk(w,sss) = φYi4(sss){ΦΦΦV

i4(sss)}−1β̃ββ
∗
(w).

The parameter values βββII(w,sss) for Winter II were obtained by perturbing βI(w,sss) for Winter

I with a 7-dimensional Gaussian noise with zero mean and a diagonal covariance matrix with

diagonal elements 5, 2, 0.06, 1, 0.02, 0.5 and 0.1.

In order to simulate the pollution level according to Model (2.2), it remained to specify the

conditional standard deviation function σk4(xxx,sss) and the innovation process [eeek4t = {ek4t(sss1), · · · ,

ek4t(sss28)}T]Tt=1 for Winters k =I and II. The empirically estimated conditional variances σ̂i4(xxx,sss)

based on the real data in winters 2015 and 2016 were used, respectively, for Winters I and II.

The innovations were generated according to a 1st-order vector auto-regressive VAR(1) process

eeek4t = AAAkeeek4,t−1 +uuuk4t where AAAk is a 28 by 28 matrix and uuuk4t ∼ N28(000,ΩΩΩk). Here, AAAk and ΩΩΩk are

empirical estimates by fitting the above VAR(1) model based on estimated standardized residuals

êeei4t via (5.1) and (5.2) based on the 2015 and 2016 winters data for Winters I and II respectively.

Finally, the simulated PM2.5 Yk4t(sss) for Winter k was obtained by using XXX i4t(sss) via

Yk4t(sss) = mk4{XXX i4t(sss), sss}+ σk4{XXX i4t(sss), sss}ek4t(sss), t = 1, · · · , T, (A.11)

with (i = 2015, k = I) and (i = 2016, k = II), respectively, and mk4(xxx,sss) = m{x;βββk(w,sss)} as

specified in (A.10). To avoid negative values in the simulated PM2.5, we added a floor value to

the simulated responses followed by a division of 3 to make the simulated PM2.5 consistent with

the observed winter level.

The meteorological baseline for simulation was constructed based on the observed meteorolog-

ical data for winter from 2010 to 2016. Hence, the true values of the adjusted averages for a site

s and region A are, respectively,

µk4(sss) = S−1

(
A4∑
a=1

na4

)−1 ∑
sss′∈W

A4∑
a=1

na4∑
t=1

mk4{XXXa4t(sss
′), sss} and µk4(A) = |A|−1

∑
s∈A

µk4(sss).

Their estimates µ̂k4(sss) and µ̂k4(A) based on each simulation can be obtained in the similar way
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as (4.2) and (4.3), respectively. For a given sample size, we replicated the above simulation 500

times. The standard errors (SEs) and root mean squared errors (RMSEs) of the estimates µ̂k4(sss)

and µ̂k4(A) can be obtained in the standard fashion.

Table S3 reports the RMSEs and SEs of meteorologically adjusted averages at all 28 sites, 5

selected sub-regions and the entire region for two sample sizes T = 1080 and 2160 in Winters I

and II, respectively. In the simulation, we divide the Central area into 4 subregions named as the

Northeast, Northwest, Southeast and Southwest areas. To avoid misleading with the Southeast

and Southwest areas, we rename the Southern area by the Far South area in Table S3. It is

observed that for each winter, as the sample size is increased, both RMSEs and SEs are reduced

in all sites and all sub-regions, which confirms the established asymptotic theory in Section 4 in

the main paper. The simulated RMSEs and the SEs were quite small relative to the underlying

level of the simulated adjusted averages, since the 28-site averages were around 155 μg/m3 and 187

μg/m3 in Winters I and II, respectively. The three southern sub-regions (Southeast, Southwest

and Far South) had relatively larger RMSEs than the two northern sub-regions, which largely

reflected the higher PM2.5 concentration in the south of Beijing.
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Appendix D: Supplementary tables and figures

Table S1: The seasonal and annual fitting R2. Station average R2 shows the average of the fitting R2s
of all monitoring sites. Station pooled R2 is obtained by pooling the fitted values from the nonparametric
model in all sites and then computing the R2 of this pooled data set.

Pollutants Season
Station Average Station Pooled

2013 2014 2015 2016 2013 2014 2015 2016

PM2.5

Spring 0.82 0.79 0.88 0.86 0.82 0.79 0.88 0.86
Summer 0.72 0.80 0.75 0.77 0.72 0.80 0.75 0.77
Autumn 0.85 0.78 0.87 0.87 0.85 0.79 0.88 0.87
Winter 0.84 0.74 0.92 0.86 0.84 0.75 0.92 0.87

PM10

Spring 0.77 0.76 0.86 0.81 0.77 0.77 0.86 0.82
Summer 0.64 0.67 0.69 0.68 0.65 0.68 0.69 0.68
Autumn 0.80 0.76 0.86 0.85 0.81 0.76 0.87 0.85
Winter 0.82 0.71 0.91 0.84 0.82 0.72 0.91 0.85

SO2

Spring 0.74 0.81 0.87 0.84 0.76 0.82 0.87 0.84
Summer 0.75 0.62 0.65 0.74 0.82 0.72 0.60 0.76
Autumn 0.81 0.70 0.91 0.87 0.83 0.72 0.91 0.89
Winter 0.78 0.67 0.83 0.78 0.79 0.69 0.83 0.78

NO2

Spring 0.76 0.76 0.82 0.82 0.79 0.81 0.85 0.84
Summer 0.65 0.55 0.65 0.71 0.76 0.73 0.79 0.80
Autumn 0.82 0.76 0.82 0.83 0.84 0.79 0.84 0.85
Winter 0.82 0.72 0.89 0.85 0.83 0.74 0.90 0.86

CO

Spring 0.78 0.82 0.88 0.86 0.77 0.83 0.88 0.86
Summer 0.78 0.71 0.74 0.77 0.77 0.71 0.77 0.78
Autumn 0.79 0.75 0.92 0.88 0.79 0.76 0.92 0.88
Winter 0.80 0.72 0.89 0.82 0.80 0.73 0.89 0.83

8-hour O3

Spring 0.92 0.89 0.95 0.95 0.94 0.91 0.95 0.95
Summer 0.87 0.73 0.88 0.86 0.89 0.77 0.89 0.88
Autumn 0.86 0.89 0.96 0.94 0.88 0.90 0.96 0.94
Winter 0.90 0.79 0.96 0.90 0.90 0.82 0.96 0.91

Table S2: Baseline parameters obtained by taking average of parameters at six selected sites in
Winter I using the standardized values of PM2.5 and the corresponding predictors.

w (wind direction) β∗
0(w) β∗

1(w) β∗
2(w) β∗

3(w) β∗
4(w) β∗

5(w) β∗
6(w)

CV 0.00 1.17 0.44 -0.59 -0.28 -0.24 0.01
NE 0.01 1.20 0.60 -0.41 -0.15 -0.26 -0.03
NW 0.00 1.49 1.13 -0.23 -0.14 -0.18 -0.23
SE 0.00 1.17 0.60 -0.36 -0.09 -0.35 0.02
SW 0.00 1.30 0.86 -0.36 -0.15 -0.36 0.04
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Table S3: The root mean squared errors (RMSE) and the standard errors (SE) of the adjusted
averages at 28 sites and 5 sub-regions that mimic those in Beijing for two simulated winters (Winters I
and II).

Winter I Winter II

RMSE SE RMSE SE

Region/Site
T 1080 2160 1080 2160 1080 2160 1080 2160

Whole Region 1.04 0.67 0.94 0.63 0.94 0.73 0.93 0.62

Northeast Sub-region 1.09 0.70 0.88 0.57 0.96 0.77 0.93 0.61
Dongsi 1.35 0.95 0.95 0.60 0.93 0.71 0.91 0.59

Dongsihuan 1.07 0.71 0.87 0.56 1.18 0.93 1.10 0.73
Nongzhanguan 1.02 0.66 0.86 0.57 1.08 0.94 0.97 0.62

Shunyi 1.10 0.69 1.08 0.69 1.12 0.82 1.09 0.71
U.S. Embassy 1.26 0.80 0.93 0.58 0.87 0.66 0.87 0.59

Northwest Sub-region 0.92 0.61 0.92 0.61 1.11 0.96 0.89 0.59
Aotizhongxin 1.17 0.78 0.91 0.59 0.91 0.73 0.88 0.57

Beibuxinqu 1.06 0.70 1.01 0.69 1.47 1.33 1.07 0.71
Changping 0.85 0.59 0.84 0.56 1.15 0.99 0.73 0.45
Guanyuan 0.97 0.61 0.89 0.58 1.09 0.89 1.09 0.69

Gucheng 1.04 0.68 1.04 0.67 1.50 1.34 1.10 0.77
Mentougou 2.15 1.30 2.01 1.08 1.04 0.77 0.97 0.64

Wanliu 1.23 0.85 1.22 0.85 1.67 1.33 1.43 0.98
Xizhimenbei 1.35 0.98 1.32 0.94 1.93 1.50 1.56 1.12
Zhiwuyuan 1.02 0.73 1.02 0.72 1.27 0.90 1.23 0.83

Southeast Sub-region 1.19 0.76 0.96 0.64 1.02 0.63 0.96 0.63
Qianmen 1.10 0.69 1.01 0.68 1.16 0.73 1.10 0.71
Tiantan 0.98 0.60 0.93 0.60 0.95 0.69 0.94 0.62

Tongzhou 1.76 1.31 1.17 0.83 1.30 0.77 1.11 0.74
Yizhuang 1.41 0.85 1.07 0.69 1.49 1.03 0.93 0.61

Yongdingmen 1.18 0.78 1.05 0.71 1.31 1.06 1.21 0.79

Southwest Sub-region 1.12 0.71 1.02 0.69 0.98 0.76 0.98 0.66
Daxing 1.55 0.97 1.19 0.78 1.49 0.90 1.02 0.67

Fangshan 1.48 0.96 1.21 0.84 1.11 0.82 1.10 0.72
Fengtai 1.15 0.80 1.15 0.78 1.08 0.77 1.08 0.71

Nansanhuan 1.34 0.84 1.18 0.79 1.35 1.05 1.31 0.92
Wanshouxigong 1.08 0.69 1.04 0.69 1.17 0.93 1.16 0.75

Yungang 0.94 0.67 0.93 0.64 1.44 1.30 1.05 0.71

Far South Sub-region 1.57 1.03 1.27 0.86 1.40 0.87 1.26 0.86
Liulihe 1.86 1.30 1.48 1.00 1.62 1.23 1.61 1.10

Yongledian 1.73 1.07 1.60 1.05 1.60 0.97 1.42 0.96
Yufa 1.49 1.04 1.15 0.77 1.73 1.14 1.11 0.74
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Table S4: Differences (μg/m3, standard errors) of seasonal and annual adjusted averages of PM2.5,
SO2, NO2 and 8-hour O3 for two regions.

Pollutant Season
Central Southern

2014-2013 2015-2014 2016-2015 2014-2013 2015-2014 2016-2015

PM2.5

Spring 1.8(3.5) -5.9(3.0) -0.5(3.2) 4.2(3.9) -6.0(3.4) -4.0(4.0)
Summer 0.1(2.8) -17.0(2.5)∗∗ -1.6(1.9) -10.6(2.7)∗ -8.1(2.2)∗ -4.8(2.0)∗

Fall 5.8(4.3) -17.2(4.8)∗ 3.0(4.7) 13.4(5.4)∗ -26.7(7.4)∗ 3.5(7.0)
Winter 7.0(3.1) -7.6(3.5) 5.9(4.0) 21.8(4.0)∗ 8.4(4.7) -15.0(4.9)∗

Average 3.7(1.7) -11.9(1.8)∗∗ 1.7(1.8) 7.2(2.0)∗ -8.1(2.4)∗ -5.1(2.4)

SO2

Spring -5.1(1.3)∗ -10.8(1.0)∗∗∗ -0.4(0.7) -6.3(1.4)∗ -11.3(1.0)∗∗∗ -2.5(0.8)∗

Summer -5.7(0.4)∗∗∗ -1.2(0.2)∗ -1.2(0.2)∗∗ 2.4(0.5)∗ -7.2(0.4)∗∗∗ -0.9(0.2)∗

Fall -7.7(0.7)∗∗∗ -3.0(0.5)∗∗ -0.8(0.5) -12.2(0.9)∗∗∗ -3.4(0.5)∗∗ 3.1(0.6)∗

Winter -11.9(0.9)∗∗∗ -9.1(0.7)∗∗∗ -4.8(0.5)∗∗∗ -8.4(1.0)∗∗∗ -10.2(0.8)∗∗∗ -2.0(0.7)∗

Average -7.6(0.4)∗∗∗ -6.0(0.3)∗∗∗ -1.79(0.3)∗∗ -6.1(0.5)∗∗∗ -8.0(0.4)∗∗∗ -0.6(0.3)

NO2

Spring 4.0(1.2)∗ -6.2(1.2)∗ 0.8(1.1) 4.4(1.3)∗ -1.7(1.1) 7.6(1.0)∗∗

Summer -2.4(0.7)∗ -5.0(0.7)∗∗ -0.3(0.7) -3.4(0.6)∗ 0.7(0.6) 1.7(0.7)∗

Fall 3.9(1.4)∗ -8.1(1.5)∗ 1.4(1.5) -1.8(1.4) -7.3(1.5)∗ 5.5(1.6)∗

Winter 2.1(1.1) -0.7(1.1) 3.2(1.3)∗ 9.4(1.1)∗∗∗ -3.8(1.0)∗ -1.8(1.2)
Average 1.9(0.6)∗ -5.0(0.6)∗∗ 1.3(0.6) 2.2(0.6)∗ -3.0(0.6)∗ 3.2(0.6)∗

8-hour O3

Spring 3.8(2.4) 0.6(2.5) -0.7(2.6) -3.1(3.0) -15.8(2.8)∗ 19.7(2.8)∗∗

Summer 16.0(2.9)∗ 1.2(3.0) -5.0(3.1) 36.7(3.0)∗∗∗ 0.8(3.2) 4.9(3.4)
Fall -2.2(2.4) 6.4(2.6)∗ -1.8(2.7) -3.9(2.8) 10.4(2.9)∗ 2.2(3.2)

Winter 3.2(0.9)∗ 1.7(1.0) 6.4(1.0)∗∗ 7.0(1.0)∗∗ 11.9(1.2)∗∗∗ 1.8(1.4)
Average 5.2(1.1)∗ 2.5(1.2) -0.3(1.2) 9.2(1.3)∗∗ 1.8(1.3) 7.1(1.4)∗

The number of ∗ indicates the level of significance in the yearly increase/decrease as specified in the caption of Table 1.
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Figure S1: Semi-variograms of the observations (black), fitted values (red) and residuals (blue) of
the nonparametric model of PM2.5, SO2, NO2 and 8-hour O3 in summer (Panel A) and winter (Panel
B) of 2015. The dots represent the empirical estimation of semi-variograms. The lines are the smoothed
curves of the empirical semi-variograms by the nonparametric LOESS method.
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For Review Only
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B Aotizhongxin, 2015
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C Aotizhongxin, 2016
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D Fengtai, 2014
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E Fengtai, 2015
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F Fengtai, 2016
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G Shunyi, 2014
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H Shunyi, 2015
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I Shunyi, 2016
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Figure S2: Auto-correlation functions of the standardized residuals of PM2.5 at sites Aotizhongxin,
Fengtai and Shunyi in four seasons from 2014 to 2016. The number in the title of each figure provides the
value of the spectral density function at zero times 2π, which is equal to the sum of all auto-covariance
functions and hence exhibits long-range temporal dependence of the standardized residuals in each season.
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For Review Only

A SO2

B 8-Hour O3

Figure S3: Seasonal concentration maps of the spatio-temporal adjusted average of SO2 (Panel A)
and 8-hour O3 (Panel B) concentration (μg/m3) in the area located in the North China Plain of Beijing
from Year 2013 to Year 2016. The number above each plot displays the regional adjusted average in
Beijing while the number inside the parentheses is the standard error. The smoothing bandwidth used
for generating the map is 0.15.
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Figure S4: Seasonally adjusted averages by using our proposed method, three years’ moving average
and the trend analysis for NO2 and 8-hour O3 in the Central and Southern areas.
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