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Tests for High-Dimensional Regression Coefficients
With Factorial Designs

Ping-Shou ZHONG and Song Xi CHEN

We propose simultaneous tests for coefficients in high-dimensional linear regression models with factorial designs. The proposed tests are
designed for the “large p, small n” situations where the conventional F-test is no longer applicable. We derive the asymptotic distribution
of the proposed test statistic under the high-dimensional null hypothesis and various scenarios of the alternatives, which allow power
evaluations. We also evaluate the power of the F-test for models of moderate dimension. The proposed tests are employed to analyze a
microarray data on Yorkshire Gilts to find significant gene ontology terms which are significantly associated with the thyroid hormone after
accounting for the designs of the experiment.

KEY WORDS: Gene-set test; Large p, small n; U-statistics.

1. INTRODUCTION

The emergence of high-dimensional data, such as the gene
expression values in microarray and the single nucleotide poly-
morphism (SNP) data, brings challenges to many traditional
statistical methods and theory. One important aspect of the
high-dimensional data under the regression setting is that the
number of covariates greatly exceeds the sample size. For ex-
ample, in microarray data, the number of genes (p) is in the
order of thousands whereas the sample size (n) is much less,
usually less than 50 due to limitation to replicate. This is the
so-called “large-p, small-n” paradigm, which translates to a
regime of asymptotics where p → ∞ much faster than n. See
Kosorok and Ma (2007), Fan, Hall, and Yao (2007), Huang,
Wang, and Zhang (?hwz07), Chen and Qin (2010) among oth-ef:hwz07?>

ers. Kosorok and Ma (2007) considered uniform convergence
for a large number of marginal discrepancy measures targeted
on univariate distributions, means, and medians. Chen and Qin
(2010) proposed a two sample test on high-dimensional means.
Both of these two aforementioned articles considered testing
under “large-p, small-n” without a regression structure, which
is the focus of the present article. Much earlier, for more mod-
erate dimensions, Portnoy (1984, 1985) had considered consis-
tency and asymptotic normality for the M-estimators of linear
regression coefficients when the dimension p of the covariates
grows to infinity faster than the square root of the sample size n.
The rates for p that Portnoy considered were p = o(n/ log(p))

for consistency and p = o(n2/3/ log(p)) for asymptotic normal-
ity of the M-estimators.

Covariate selection for high-dimensional linear regression
has attracted much attention and has been intensively consid-
ered in recent years. Penalizing methods are alternatives to the
traditional least square estimator for simultaneous variable se-
lection and shrinkage estimation. These include the LASSO
(Tibshirani 1996) with a L1-penalty, the bridge regression with
a L2-penalty (Frank and Friedman ?ff96), the SCAD penalty<ref:ff96?>
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proposed by Fan and Li (2001) and Candes and Tao (2007)’s
Dantzig selector; see also Fan and Lv (2008) and Wang (2009)
for other methods of variable selection. There is also a line
of works on ANOVA with diverging number of treatments
while the number of replications (cell sample sizes) is small
and can be regarded as fixed. This includes the rank based
nonparametric tests proposed by Brownie and Boos (?bb94), <ref:bb94?>

Boos and Brownie (1995), Akritas and Arnold (2000), Bathke
and Lankowski (2005), Bathke and Harrar (2008), Harrar and
Bathke (2008), and Wang and Akritas (2009). The problem can
be viewed as “large p, fixed n” in contrast to the conventional
“fixed p, large n” setting and the “large p, small n” paradigm
we are considering.

This article is aimed at developing simultaneous tests on lin-
ear regression coefficients that can accommodate high dimen-
sionality and factorial designs. The latter is often encountered
in statistical experiments especially those in biology, and there
is no exception for high-dimensional data. Testing hypotheses
on the regression coefficients is a necessity in determining the
effects of covariates on certain outcome variable. Our interest
here is on testing the significance of a large number of covari-
ates simultaneously. This is motivated by the latest need in bi-
ology to identify significant sets of genes (Subramanian et al.
2005; Efron and Tibshirani 2007; Newton et al. 2007), which
are associated with certain clinical outcome, rather than iden-
tifying individual gene. As the dimension of a gene-set ranges
from a few to thousands, and the gene sets can overlap as they
share common genes, there are both high dimensionality and
multiplicity in gene-set testing. In order to test for the signif-
icance of a gene set, the p-value associated with a hypothesis
regarding the regression coefficients corresponding to the gene
set is needed. This calls for multivariate tests for regression co-
efficients that can accommodate both high dimensionality and
dependence among the covariates.

We propose tests for high-dimensional regression coeffi-
cients for both simple random or factorial designs. A feature
of the tests is that they do not require explicit relationships be-
tween the growth rates of p and n, which makes the tests adapt-
able to a wide range of high dimensionality. The tests also ac-
count for a variety of dependence among the high-dimensional
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covariates. These together with their accommodation to factor-
ial designs makes the tests more applicable in applications. The
F-test is the conventional test for testing regression coefficients
simultaneously under the normality and p < n − 1. We take the
opportunity to study the F-test and find that it is adversely af-
fected by an increasing dimension.

The article is organized as follows. We first study the F-test
and propose a new test statistic in Section 2 for simple ran-
dom designs. Section 3 discusses some general properties of
U-statistics under high dimensionality. Section 4 establishes the
main properties of the proposed test. Extensions to factorial de-
signs are made in Section 5. Section 6 reports results from sim-
ulation studies. Empirical analyses on a microarray dataset on
Yorkshire Gilts with factorial designs are reported in Section 7.
All technical details are relegated to the Appendix.

2. MODELS AND TEST STATISTICS

Consider a linear regression model

E(Yi|Xi) = α + X′
iβ and var(Yi|Xi) = σ 2 (2.1)

for i = 1, . . . ,n where X1, . . . ,Xn are independent and iden-
tically distributed p-dimensional covariates and Y1, . . . ,Yn are
independent responses, β is the vector of regression coeffi-
cients, and α is a nuisance intercept. We do not impose any
specific distribution on Yi given Xi except when studying the
F-test in the next subsection.

The true parameter (α,β) in the linear regression model is
defined as

(α,β) = arg min
α̃∈R1,β̃∈Rp

E(Yi − α̃ − X′
iβ̃)2.

To make β identifiable, we assume that � = var(Xi) > 0. This
is weaker than the sparse Riesz condition in Zhang and Huang
(2008), which requires the eigenvalues of � are all bounded
from below and above. The sparse Riesz condition is for the
purpose of parameter estimation and variable selection, which
are different from the agenda of this article.

Our interest is in testing a high-dimensional hypothesis

H0 :β = β0 vs H1 :β �= β0 (2.2)

for a specific β0 ∈ Rp. For instance β0 = 0 which arises in the
context of gene-set testing with H0 indicating a particular set of
genes to be insignificant.

2.1 F-Test and Its Performances Under
High Dimensionality

When the conditional distribution of Yi given Xi is normally
distributed, the conventional test for (2.2) is the F-test when
p < n − 1. The F-statistic is a monotone function of the like-
lihood ratio statistic and is distributed as a noncentral F distri-
bution under the alternative (Anderson 2003). It is interesting
to know the power implication on the F-test when p/n → ρ ∈
(0,1) when both p and n diverge to infinity.

Let U = (1,X) which is assumed to be of full rank and A =
(0, Ip), where 1 denotes the n-dimensional vector of 1’s and Ip

denotes the p × p identity matrix. Let γ T = (α,βT) and γ T
0 =

(α,βT
0 ), then the null hypothesis in (2.2) becomes H0 : Aγ =

Aγ0. The F statistic for testing H0 (Rao et al. 2008, p. 51) is

Gn,p = (γ̂ − γ0)
′A′(A(U′U)−1A′)−1A(γ̂ − γ0)/p

Y ′(In − PU)Y/(n − p − 1)

= (β̂ − β0)
′(A(U′U)−1A′)−1(β̂ − β0)/p

Y′(In − PU)Y/(n − p − 1)
, (2.3)

where γ̂ = (α̂, β̂ ′)′ = (U′U)−1U′Y is the least square estima-
tor of γ and Y = (Y1, . . . ,Yn)

′. Under H0, Gn,p ∼ Fp,n−p−1.
Hence, an α-level F-test rejects H0 if Gn,p > Fp,n−p−1;α, the
upper α quantile of the Fp,n−p−1 distribution.

To facilitate our analysis, like Bai and Saranadasa (1996), we
assume that:

There exists a m-variate random vector Zi =
(Zi1, . . . ,Z′

im) for some m ≥ p so that Xi = �Zi +
μ, where � is a p × m matrix such that ��′ = �,
and E(Zi) = 0, var(Zi) = Im; each Zil has finite
8th moment and E(Z4

il) = 3 + 	 for some con-
stant 	; for any

∑d
ν=1 �ν ≤ 8 and i1 �= · · · �= id,

E(Z�1
1i1

Z�2
1i2

· · ·Z�d
1id

) = E(Z�1
1i1

)E(Z�2
1i2

) · · ·E(Z�d
1id

).

(2.4)

Model (2.4) resembles a factor model where the p-variate
X is linearly generated by a m-variate factor Z. However, un-
like the factor model which assumes far less number of factors
than p so as to achieve a dimension reduction, we assume here
the number of factors m is at least as large as p. Model (2.4)
slightly differs from the one assumed in Bai and Saranadasa
(1996) in relaxing their assumption of Zi having independent
components. We also requires the existence of the 8th moments
for Zi.

The power property of the F-test when p/n → ρ ∈ (0,1) is
depicted in the following theorem. In this article, we use �(·)
as the distribution function of N(0,1).

Theorem 1. Assume Yi|Xi ∼ N(X′
iβ,σ 2), Model (2.4), (β −

β0)
′�(β − β0) = o(1) and ρn = p/n → ρ ∈ (0,1) as n → ∞.

Then F(‖β − β0‖), the power function of the F-test, satisfies

F(‖β − β0‖)

− �

(
−zα +

√
(1 − ρ)n

2ρ
(β − β0)

′�(β − β0)

)
→ 0. (2.5)

We notice that the denominator of the F statistic (2.3) es-
timates σ 2. When p is closer to n, there are fewer degrees of
freedom left to estimate σ 2. The impact of the dimensionality
on the F-test is revealed in Theorem 1 by

√
(1 − ρ)/ρ being

a decreasing function of ρ. Hence, the power is adversely im-
pacted by an increased dimension even p < n − 1, reflecting a
reduced degree of freedom in estimating σ 2 when the dimen-
sionality is close to the sample size.

2.2 A New Test Statistic

We have seen two limitations with the F-test under mild di-
mensionality above. One is that p cannot be larger than n − 1;
and the other is the conditional normality assumption. To test
for regression coefficients in the “large p, small n” paradigm
without the normality assumption, we modify the F-statistic
in two aspects. One is to remove the denominator as it is a
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major contributor to F-test’s fragile power performance under
even mild dimensionality as shown in Theorem 1. Another is to
renovate the numerator to make it more effective in measuring
the discrepancy between β and β0. We note that when α = 0,

‖Y − Xβ0‖2 is a measure between β and β0, whose expecta-
tion is (β −β0)

′E(X′X)(β −β0)+ nσ 2. To avoid the nσ 2 term,
we consider (Yi − X′

iβ0)(Yj − X′
jβ0) for i �= j and a U-statistic

with X′
iXj(Yi − X′

iβ0)(Yj − X′
jβ0) as the kernel. Our proposal

here is similar to the effort made in improving the Wald type F-
statistics as demonstrated in Brunner, Dette, and Munk (1997)
and Ahmad, Brunner, and Werner (2008).

When the nuisance parameter α �= 0, to remove α, we con-
sider a U-statistic

Tn,p = 1

P4
n

∗∑
φ(i1, i2, i3, i4), (2.6)

where

φ(i1, i2, i3, i4) = 1
4

(
Xi1 − Xi2

)′(Xi3 − Xi4

)
	i1,i2	i3,i4 (2.7)

and 	i,j = Yi − Yj − (Xi − Xj)
′β0. Through this article, we

use
∑∗ to denote summations over distinct indeces. For ex-

ample, in (2.6), the summation is over the set {i1 �= i2 �= i3 �=
i4, for i1, i2, i3, i4 ∈ {1, . . . ,n}} and Pm

n = n!/(n − m)!. As Tn,p

is invariant to location shifts in both Xi and Yi. We assume,
without loss of generality, that α = μ = 0 in the rest of the arti-
cle.

The set of conditions we use to regulate for the “large p,
small n” is

p(n) → ∞ as n → ∞,
(2.8)

� > 0, and tr(�4) = o{tr2(�2)}.
These conditions do not impose any explicit relative growth
rates between p and n, and they are quite mild. Assuming �

being positive definite assures the identification of the regres-
sion coefficient. We allow some eigenvalues of � diverge to
infinity as p → ∞. If all the eigenvalues are bounded, the last
part of (2.8) is trivially true for any p.

3. U–STATISTICS UNDER HIGH DIMENSIONALITY

As Tn,p is a U-statistic, we devote this section to discuss U-
statistics for high-dimensional data. The theory of U-statistics
for fixed-dimensional data, as pioneered by Hoeffding (1948),
has been well documented; see Serfling (1980) and Lee (1990)
for summaries. We will demonstrate below that, while some
results in the classical U-statistic remain valid, others may not
be directly applicable if p diverges.

Suppose W1,W2, . . . ,Wn are independent and identically
distributed observations from a distribution F on Rq, where q
may diverge. Consider a U-statistic of sth order for a fixed s < n

Un,q = 1( n
s

) ∑
Cn,s

h
(
Wi1 , . . . ,Wis

)
,

where Cn,s = {all distinct combinations of {i1, i2, . . . , is} from
{1, . . . ,n}}. The kernel h is symmetric so that its value is in-
variant to the permutations of its arguments. Let E{h(W1, . . . ,

Ws)} = θ(F), say. In our current testing problem, q = p + 1,
s = 4, and θ(F) = ‖�(β − β0)‖2.

Let hc(w1, . . . ,wc) = E{h(w1, . . . ,wc,Wc+1, . . . ,Ws)} be
projections of h to lower-dimensional sample spaces, h̃ = h −
θ(F) and h̃c = hc −θ(F) for c = 1, . . . , s. Let gc(w1, . . . ,wc) =
h̃c − ∑c−1

j=1
∑

1≤i1<···<ij≤c gj(wi1, . . . ,wij) where g1(w1) =
h̃1(w1), and

Mnc =
∑

1≤i1<···<ic≤n

gc
(
wi1, . . . ,wic

)
.

The following proposition provides the Hoeffding decompo-
sitions (Hoeffding 1948) for Un,q and its variance respectively,
which are valid regardless of q being fixed or diverging.

Proposition 1. Assume E{h2(W1, . . . ,Ws)} exist and let
ζc = var(hc) for c = 1,2, . . . , s. Then (i) ζc+1 ≥ ζc; (ii)

Un,q − θ(F) =
s∑

c=1

(
s
c

)(
n
c

)−1

Mnc (3.1)

and (iii)

var(Un,q) =
(

n
s

)−1 s∑
c=1

(
s
c

)(
n − s
s − c

)
ζc. (3.2)

The proof in Hoeffding (1948) (see also Serfling 1980) is
applicable even when q is increasing to infinity. Specifically,
the result in (i) is implied by E{hc+1(w1, . . . ,wc,Wc+1)} =
hc(w1, . . . ,wc) and

ζc+1 = E
{
var(hc+1(W1, . . . ,Wc+1)|W1, . . . ,Wc)

} + ζc.

The variance decomposition for the variance in (3.2) reflects the
decomposition of the U-statistic in (3.1) as {Mnc,Fc}c≥1 forms
a forward martingale where Fc denotes the σ -field generated
by {W1, . . . ,Wc} and var(Mnc) = O(ζc).

When q → ∞, unlike the fixed dimension cases, ζc may no
longer be bounded and can diverge. This brings ambiguity in as-
sessing the relative orders of terms in the decomposition (3.1).
To appreciate this point, we note that if q is fixed, all ζc are
bounded provided ζs < ∞, hence the (c + 1)th term in the vari-
ance decomposition (3.2) is a smaller order of the cth term. This
means that the asymptotic behavior of the U-statistic is deter-
mined by the cth term where c is the smallest integer such that
ζc �= 0. However, if q diverges, ζc may diverge and a higher-
order projection Mn(c+1) may be at the same order or higher
than Mnc. Hence, for high-dimensional data, the leading order
terms of the U-statistics may consist of multiple terms.

As ζc is monotone nondecreasing, the following strategy may
be applied to determine the dominant terms of Un,q. We can
start evaluating ζc’s from the two ends, namely ζ1 and ζs. If ζ1
and ζs are of the same order, then Un,q will be dominated by the
first term so that

Un,q − θ(F) =
(

s
1

)(
n
1

)−1

Mn1{1 + op(1)}.
If ζs and ζ1 are not the same order, but ζ2 and ζs are, then Un,q
will be dominated by the first two terms so that

Un,q − θ(F) =
2∑

c=1

(
s
c

)(
n
c

)−1

Mnc{1 + op(1)}.

This process can be continued until the dominating terms are
found. We will employ this strategy on the proposed test statis-
tic Tn,p in the next section.
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4. MAIN RESULTS

We first symmetrize φ defined in (2.7) by

h(Wi,Wj,Wk,Wl) = 1
3 {φ(i, j, k, l)+φ(i, k, j, l)+φ(i, l, j, k)},

where Wi = (Xτ
i , εi)

τ and εi = Yi − X′
iβ0. Then

Tn,p = 1( n
4

) ∑
Cn,4

h(Wi,Wj,Wk,Wl). (4.1)

It can be shown that the projections of h are, respectively,

h1(w1) = 1
2 (β − β0)

′(x1x′
1 + �)�(β − β0)

+ 1
2ε1x′

1�(β − β0),

h2(w1,w2) = 1
6

{
(β − β0)

′(x1 − x2)(x1 − x2)
′�(β − β0)

+ (ε1 − ε2)(x1 − x2)
′�(β − β0)

+ ((β − β0)
′(x1x′

1 + �) + ε1x′
1)

× (ε2x2 + (x2x′
2 + �)(β − β0))

}
,

and

h3(w1,w2,w3)

= 1
12 {(x1 − x2)

′(β − β0) + (ε1 − ε2)}
× (x1 − x2)

′{(x3x′
3 + �)(β − β0) + x3ε3}

+ 1
12 {(x1 − x3)

′(β − β0) + (ε1 − ε3)}
× (x1 − x3)

′{(x2x′
2 + �)(β − β0) + x2ε2}

+ 1
12 {(x2 − x3)

′(β − β0) + (ε2 − ε3)}
× (x2 − x3)

′{(x1x′
1 + �)(β − β0) + x1ε1}.

Let Bi = (β−β0)
′�i(β−β0) for i = 1,2,3, A0 = �′�, A1 =

�′(β − β0)(β − β0)
′�, A2 = �′�(β − β0)(β − β0)

′��, and
A3 = �′��. Derivations given in the Appendix show that ζ1 =
1
4ζ ∗

1 and ζ2 = 1
36ζ ∗

2 where

ζ ∗
1 = (B1 + σ 2)B3 + B2

2 + 	 tr(A1 ◦ A2) and

ζ ∗
2 = σ 4 tr(�2) + 21B2

2 + 22B1B3 + 22σ 2B3

+ B2
1 tr(�2) + 2σ 2 tr(�2)B1

+ 2	(B1 + σ 2) tr(A1 ◦ A3)

+ 20	 tr(A1 ◦ A2) + 	2 tr{(A0 diag(A1))
2},

where C ◦ B = (cijbij) for matrices C = (cij) and B = (bij), and
diag(A) = diag{a11, . . . ,amm} for A = (aij)m×m. The proof of
the following theorem in the Appendix shows that {ζc}4

c=2 are
of the same order. This means that the test statistic is dominated
by the first two terms corresponding Mn1 and Mn2.

Theorem 2. Under Model (2.4) and as n → ∞,

(i) E(Tn,p) = ‖�(β − β0)‖2 and var(Tn,p) = { 4
nζ ∗

1 +
2

n(n−1)
ζ ∗

2 }{1 + o(1)};
(ii) Tn,p −‖�(β−β0)‖2 = { 42

n Mn1 + 2×62

n(n−1)
Mn2}{1+op(1)},

where E(M2
n1) = ζ1 and E(M2

n2) = ζ2 − 2ζ1.

Under H0 :β = β0, A1 = A2 = Bi = 0 for i = 1,2,3. Thus,
ζ1 = 0 and Tn,p is a degenerate U-statistic dominated by Mn2.
In this case,

var(Tn,p) = 2

n(n − 1)
σ 4 tr(�2){1 + o(1)}.

This form of the variance for Tn,p is also valid under a sub-
class of H1 specified by

(β − β0)
′�(β − β0) = o(1) and

(β − β0)
′�(β − β0)(β − β0)

′�3(β − β0) (4.2)

= o{n−1 tr(�2)}.
As this subclass prescribes a smaller difference between β and
β0, we call it the local alternatives. Under the local alternatives,
ζ1 = o(n−1ζ2) which means like the case under H0, Mn2 is also
the dominating term while Mn1 is of smaller order.

Theorem 3. Assume Model (2.4) and Condition (2.8), then
under either H0 or the local alternatives (4.2), as n → ∞,

n

σ 2
√

2 tr(�2)

(
Tn,p − ‖�(β − β0)‖2) d→ N(0,1). (4.3)

To formulate a test procedure based on Tn,p, we need to es-
timate tr(�2) and σ 2 appeared in the asymptotic variance. We
will use the estimator of tr(�2) proposed in Chen, Zhang, and
Zhong (2010). Specifically, let Y1n = 1

P2
n

∑∗
(X′

i1
Xi2)

2, Y2n =
1

P3
n

∑∗ X′
i1

Xi2X′
i2

Xi3 , and Y3n = 1
P4

n

∑∗ X′
i1

Xi2X′
i3

Xi4 . Then an

unbiased and ratio consistent estimator of tr(�2) is

̂tr(�2) = Y1n − 2Y2n + Y3n.

We note here that a closely related estimator, that only employs
Y1,n, has been proposed in Ahmad, Werner, and Brunner (2008)
for normally distributed Xi with zero mean. The estimator of σ 2

under H0 is

σ̂ 2 = 1

n − 1

n∑
i=1

(Yi − X′
iβ0 − Ȳ + X̄′β0)

2. (4.4)

Applying Theorem 3 and the Slutsky Theorem, the proposed
test rejects H0 at a significant level α if

nTn,p ≥
√

2̂tr(�2)σ̂ 2zα, (4.5)

where zα is the upper-α quantile of N(0,1).
Theorem 3 also implies that L(‖β − β0‖), the asymptotic

power of the proposed test under the local alternatives is

L(‖β − β0‖) .= �

(
−zα + n‖�(β − β0)‖2√

2 tr(�2)σ 2

)
. (4.6)

The power is largely impacted by ηn(β−β0,�,σ 2) = n‖�(β−
β0)‖2/{√2 tr(�2)σ 2}, which may be viewed as a signal to
noise ratio (SNR). In particular, the power converges to α if
ηn(β − β0,�,σ 2) = o(1) which means that the test cannot dis-
tinguish H0 from the local alternative in this case. If it is of a
larger order of 1, the power converges to 1, indicating consis-
tency of the test.

Let λ1 ≤ λ2 ≤ · · · ≤ λp be the eigenvalues of �. Then,
a sufficient condition for the test to have a nontrivial power
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is ‖β − β0‖ = O(n−1/2S1/4
λ λ−1

1 ) where Sλ = ∑p
i=1 λ2

i . Sup-
pose all the eigenvalues are bounded from zero and infinity, let
δβ = ‖β − β0‖/√p define “signal strength,” then the test has
nontrivial power if δβ is of order n−1/2p−1/4. This is a smaller
order than n−1/2, the corresponding “signal” strength for the
fixed-dimensional case.

We can also evaluate power of the proposed test under other
scenarios of H1 such that

(β − β0)
′�(β − β0) is not o(1) (4.7)

violating the first part of (4.2) in the specification of the local
alternatives. We will demonstrate in the Appendix that under
two situations of (4.7), the proposed test can achieve at least
50% power.

5. GENERALIZATION TO FACTORIAL DESIGNS

So far we have assumed that {(Xi,Yi)}n
i=1 is a simple ran-

dom sample. However, in many scientific studies, observations
are obtained via certain designs of experiments. For example,
a randomized factorial design was used in a microarray study
that we will analyze in the next section. In this section, we pro-
vide an extension of the proposed high-dimensional regression
test to accommodate factorial designs.

For ease of expedition, we will concentrate on two way fac-
torial designs with two factors A and B, where A has I levels
and B has J levels. Let c indicate a cell for c = 1, . . . , IJ, which
has nc observations in the cell. The observations (X′

ijk,Yijk) in
the ith level of A and jth level of B satisfy a linear model

E(Yijk|Xijk) = α0 + γi + θj + γ θij + X′
ijkβ,

k = 1, . . . ,nc, (5.1)

where γi represent for the effect of A, θj for that of B, and γ θij

for their interactions. These effects could be either random ef-
fects or fixed effects. Our purpose in this section is to generalize
the test given in Section 4 for

H0 :β = β0 vs H1 :β �= β0 (5.2)

for Model (5.1) while treating (α0, γi, θj, γ θij) as nuisance pa-
rameters.

Let μij = α0 + γi + θj + γ θij. Model (5.1) can be written as

E(Yijk|Xijk) = μij + X′
ijkβ, k = 1, . . . ,nc. (5.3)

Define Y = (Y1′, . . . ,YIJ′)′, X = (X1′,X2′, . . . ,XIJ′)′ where

Xc = (
Xij1, . . . ,Xijnc

)′ := (
Xc1, . . . ,Xcnc

)′

and Yc = (Yij1, . . . ,Yijnc)
′ := (Yc1, . . . ,Ycnc)

′ for c = (i − 1)J +
j. Then

E(Y|X) = Dα + Xβ, (5.4)

where D = IIJ ⊗ 1nc is the design matrix, α corresponding to
the cell means parameters μij. Multiply I − PD on both sides of
(5.4) where PD = D(D′D)−D′ = IIJ ⊗ n−1

c 1nc 1′
nc

is the projec-
tion matrix of D, we have

E{(I − PD)Y|X} = (I − PD)Xβ,

where we eliminate the nuisance parameters α in (5.4). So a
natural generalization of Tn,p to the factorial design is

Tn,p = 1

IJ

IJ∑
c=1

(
P4

nc

)−1
∗∑

φ(i, j, k, l), (5.5)

where φ(i, j, k, l) = 1
4 (Xci − Xcj)

′(Xck − Xcl)	(i, j)	(k, l),
	(i, j) = {Yci − Ycj − (Xci − Xcj)

′β0}, and the second summa-
tion is over distinct observations in the cth cell.

As an extension to Model (2.4), we assume in each cell

Xci = �cZci + μc, (5.6)

where �c is a p × m matrix for some m ≥ p such that �c�
′
c =

�c = var(Xijk) for c = (i−1)J + j, and Zci are independent and
identically distributed random vectors having the same qualifi-
cations as in Model (2.4). An extension of Condition (2.8) is

p(nc) → ∞ as min
c

nc → ∞,

(5.7)
�c > 0, and tr(�4

c ) = o{tr2(�2
c )}.

For c = 1, . . . , IJ, the factorial design version of the local
alternative hypothesis (4.2) is

(β − β0)
′�c(β − β0) = o(1) and

(β − β0)
′�c(β − β0)(β − β0)

′�3
c (β − β0) (5.8)

= o{n−1
c tr(�2

c )}.

The following corollary can be readily established by modi-
fying the proof of Theorem 3.

Corollary 1. Assume Model (5.6) and Assumption (5.7),
then under either H0 or (5.8),

σ−1
fac,0

(
Tn,p − 1

IJ

IJ∑
c=1

‖�c(β − β0)‖2

)
d→ N(0,1), (5.9)

where σ 2
fac,0 = 2σ 4

(IJ)2

∑IJ
c=1 tr(�2

c )/{nc(nc − 1)}.

Let ̂tr(�2
c ) be the analog of the tr(�2) estimator given in (4.4)

and σ̂ 2 = 1
IJ

∑
i,j

1
nc−1

∑nc
k=1(Yijk − X′

ijkβ0 − Ȳij· + X̄′
ij·β0)

2,

where Ȳij· = 1
nc

∑nc
k=1 Yijk and X̄ij· = 1

nc

∑nc
k=1 Xijk. Then, an α-

level test for the factorial design rejects H0 if

Tn,p ≥ σ̂ 2zα

(IJ)

{
2

IJ∑
c=1

̂tr(�2
c )/{nc(nc − 1)}

}1/2

.

Similar to our analysis in the Appendix for the simple ran-
dom design, we can also evaluate the power of the test for two
fixed alternatives under

(β − β0)
′�c(β − β0) is not o(1) for any c. (5.10)

This evaluation is given in a longer version of this article.
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6. SIMULATION STUDY

We conducted numerical simulations to evaluate the finite
sample performance of the proposed tests under both sim-
ple random and factorial designs. For comparison purposes,
we also carried out simulation for the F-test and an Empir-
ical Bayes (EB) test proposed by Goeman, Finos, and van
Houwelingen (2009). The empirical Bayes test is formulated
via a score test on the hyper parameter of a prior distribution
assumed on the regression coefficients. As it allows p > n, it is
applicable for high-dimensional data.

The first set of simulations were designed to evaluate the per-
formance of the test for the linear regression model with the
simple random designs:

Yi = α + X′
iβ + εi, (6.1)

where var(εi) = σ 2 = 4. Two distributions were experimented
for εi. One was N(0,4); the other was a centralized gamma dis-
tribution with the shape parameter 1 and the scale parameter
0.5. The hypotheses to be tested were

H0 :β = 0p×1 vs H1 :β �= 0p×1.

Independent and identically distributed covariates X1, . . . ,

Xn with Xi = (Xi1, . . . ,Xip)
′ were generated according to a

moving average model

Xij = ρ1Zij + ρ2Zi(j+1) + · · · + ρTZi(j+T−1) + μj,

j = 1, . . . ,p; (6.2)

for some T < p. Here Zi = (Zi1, . . . ,Zi(p+T−1))
′ is a (p +

T − 1)-dimensional N(0, Ip+T−1) random vector, {μj}p
j=1 were

fixed constants generated from the Uniform(2,3) distribution.
The coefficients {ρl}T

l=1 were generated independently from the
Uniform(0,1) distribution and were kept fixed once generated.
Model (6.2) implied that � = (

∑T−|j−l|
k=1 ρkρk+|j−l|I{|j − l| <

T}). Hence the correlation among Xij and Xil were determined
by |j − l| and T . We chose two values of T, 10 and 20, to gen-
erate different levels of dependence. The autocorrelation func-
tions for model (6.2) are displayed in Figure 1.

Two configurations of the alternative hypothesis H1 were ex-
perimented. One allocated half of the β-components of equal
magnitude to be nonzeros, the so-called “nonsparse case.” The
other has only five nonzero components of equal magnitude, the
so-called “sparse case.” In both cases, we fixed ‖β‖2 at three
levels: 0.02,0.04, and 0.06. To gain information on the perfor-
mance of the proposed test, we consider two settings regarding
p and n. One is p < n, which allowed F-test; and the other one is
p � n. In the first setting, we set ρn = p/n = (0.85,0.90,0.95),

where p = 34,54,76 and n = 40,60,80, respectively. For the
setting of p � n, we chose p = 310,400, and 550, which was
increased exponentially, according to p = exp(n0.4) + 230 for
n = 40,60,80, respectively.

Tables 1 and 2 summarize the empirical sizes and powers
of the proposed tests as well as those for the F-tests and EB
tests with the normally and the centralized gamma distributed
residuals for p < n. The empirical sizes of the proposed tests,
EB tests and the F-tests were quite reasonably around 0.05. We
find that the proposed tests consistently outperformed the EB
and the F-tests for both normally and gamma distributed resid-
uals, for different levels of dependence (T = 10 or 20), and for
both the sparse and the nonsparse settings. In particular, in the
sparse setting, although there were some reduction of power
for all three tests, the power reduction in the F-test was the
most significant. The empirical power of the proposed test was
quite responsive to the signal to the noise ratio (SNR), which
is n‖�(β − β0)‖2/{√2 tr(�2)σ 2}, in all the settings. We also
computed the theoretical power (reported in a longer version
of the article) given in (4.6) derived from Theorem 3 under
the so-called local alternatives. It was found that there was a
good agreement between the empirical power and the theoreti-
cal power when the SNR was relatively small. This makes sense
as a small SNR is much in tune with the local alternatives.

Tables 3 and 4 report the empirical powers and sizes of the
proposed tests and the EB tests when p were much larger than n,
which makes F-test unapplicable. We observe that the sizes of
the proposed tests became closer to the nominal level 0.05 than
Table 1 and 2. This is also confirmed by the null distributions

Figure 1. The autocorrelation functions for series {Xij}p
j=1.
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Table 1. Empirical size and power of the F-test, the EB test and the proposed test (new) for H0 :β = 0p×1 vs H1 :β �= 0p×1 at significant
level 5% for normal residual

T = 10 T = 20

(n,p) ‖β‖2 SNR F-test EB New SNR F-test EB New

(a) Non-sparse case
(40, 34) 0.00 (size) 0.00 0.05 0.04 0.06 0.00 0.05 0.04 0.07

0.02 0.96 0.16 0.19 0.26 4.31 0.19 0.65 0.71
0.04 1.92 0.31 0.36 0.44 8.62 0.35 0.90 0.93
0.06 2.89 0.41 0.48 0.57 12.94 0.51 0.97 0.98

(60, 54) 0.00 (size) 0.00 0.05 0.03 0.06 0.00 0.05 0.04 0.06
0.02 1.48 0.21 0.26 0.34 8.19 0.28 0.92 0.95
0.04 2.95 0.43 0.53 0.62 16.38 0.53 1.00 1.00
0.06 4.44 0.62 0.70 0.80 24.57 0.72 1.00 1.00

(80, 76) 0.00 (size) 0.00 0.06 0.03 0.06 0.00 0.04 0.04 0.06
0.02 1.25 0.19 0.24 0.33 6.19 0.25 0.87 0.91
0.04 2.51 0.34 0.48 0.56 12.39 0.41 0.99 1.00
0.06 3.76 0.52 0.68 0.77 18.58 0.56 1.00 1.00

(b) Sparse case
(40, 34) 0.02 0.59 0.08 0.12 0.18 1.41 0.09 0.25 0.32

0.04 1.19 0.12 0.19 0.27 2.82 0.15 0.43 0.52
0.06 1.78 0.17 0.29 0.38 4.23 0.20 0.60 0.68

(60, 54) 0.02 0.81 0.09 0.14 0.22 2.22 0.09 0.42 0.50
0.04 1.63 0.13 0.26 0.36 4.45 0.18 0.68 0.76
0.06 2.44 0.18 0.40 0.50 6.68 0.22 0.85 0.90

(80, 76) 0.02 0.62 0.07 0.11 0.17 1.67 0.09 0.34 0.42
0.04 1.25 0.10 0.22 0.33 3.35 0.11 0.57 0.67
0.06 1.87 0.13 0.32 0.44 5.03 0.16 0.80 0.87

NOTE: The standard error of power entries is bounded by 0.016 calculated based on 1000 simulations. SNR (signal-to-noise ratio) is n‖�β‖2/{
√

2 tr(�2)σ 2}.

Table 2. Empirical size and power of the F-test, the EB test and the proposed test (new) for H0 :β = 0p×1 vs H1 :β �= 0p×1 at significant
level 5% for centralized gamma residual

T = 10 T = 20

(n,p) ‖β‖2 SNR F-test EB New SNR F-test EB New

(a) Non-sparse case
(40, 34) 0.00 (size) 0.00 0.04 0.04 0.05 0.00 0.05 0.04 0.06

0.02 0.96 0.14 0.22 0.28 4.31 0.20 0.67 0.73
0.04 1.92 0.30 0.36 0.45 8.62 0.35 0.88 0.92
0.06 2.89 0.47 0.49 0.59 12.94 0.52 0.95 0.96

(60, 54) 0.00 (size) 0.00 0.06 0.03 0.06 0.00 0.05 0.04 0.06
0.02 1.48 0.22 0.29 0.39 8.19 0.28 0.90 0.93
0.04 2.95 0.46 0.55 0.63 16.38 0.53 0.99 0.99
0.06 4.44 0.63 0.73 0.79 24.57 0.72 1.00 1.00

(80, 76) 0.00 (size) 0.00 0.04 0.03 0.06 0.00 0.05 0.04 0.06
0.02 1.25 0.21 0.23 0.31 6.19 0.24 0.86 0.90
0.04 2.51 0.38 0.48 0.58 12.39 0.41 0.98 0.98
0.06 3.76 0.51 0.68 0.75 18.58 0.59 1.00 1.00

(b) Sparse case
(40, 34) 0.02 0.59 0.07 0.13 0.20 1.41 0.09 0.26 0.35

0.04 1.19 0.14 0.22 0.31 2.82 0.13 0.49 0.58
0.06 1.78 0.15 0.29 0.40 4.23 0.21 0.62 0.70

(60, 54) 0.02 0.81 0.09 0.15 0.23 2.22 0.09 0.42 0.49
0.04 1.63 0.11 0.30 0.40 4.45 0.17 0.69 0.76
0.06 2.44 0.15 0.45 0.56 6.68 0.24 0.86 0.91

(80, 76) 0.02 0.62 0.06 0.11 0.18 1.67 0.08 0.37 0.43
0.04 1.25 0.10 0.24 0.33 3.35 0.12 0.65 0.72
0.06 1.87 0.12 0.35 0.48 5.03 0.14 0.77 0.84

NOTE: The standard error of power entries is bounded by 0.016 calculated based on 1000 simulations. SNR (signal-to-noise ratio) is n‖�β‖2/{
√

2 tr(�2)σ 2}.
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Table 3. Empirical size and power of the EB test and the proposed test (new) for H0 :β = 0p×1 vs H1 :β �= 0p×1 at significant level 5%
for normal residual

T = 10 T = 20

(n,p) ‖β‖2 SNR EB New SNR EB New

(a) Non-sparse case
(40, 310) 0.00 (size) 0.00 0.00 0.06 0.00 0.02 0.06

0.02 0.30 0.01 0.09 1.99 0.26 0.46
0.04 0.61 0.01 0.15 3.99 0.47 0.68
0.06 0.92 0.05 0.21 5.98 0.62 0.81

(60, 400) 0.00 (size) 0.00 0.01 0.05 0.00 0.01 0.05
0.02 0.49 0.02 0.14 2.51 0.30 0.54
0.04 0.98 0.05 0.23 5.03 0.63 0.82
0.06 1.47 0.08 0.31 7.54 0.83 0.93

(80, 550) 0.00 (size) 0.00 0.00 0.05 0.00 0.02 0.06
0.02 0.55 0.02 0.15 4.02 0.63 0.79
0.04 1.11 0.08 0.29 8.05 0.91 0.96
0.06 1.66 0.13 0.37 12.08 0.98 0.99

(b) Sparse case
(40, 310) 0.02 0.16 0.01 0.08 0.58 0.05 0.15

0.04 0.32 0.01 0.12 1.17 0.09 0.23
0.06 0.48 0.01 0.11 1.75 0.12 0.30

(60, 400) 0.02 0.27 0.01 0.08 0.60 0.05 0.16
0.04 0.54 0.02 0.14 1.21 0.09 0.25
0.06 0.82 0.04 0.18 1.82 0.14 0.35

(80, 550) 0.02 0.35 0.02 0.10 1.05 0.11 0.24
0.04 0.70 0.03 0.16 2.11 0.25 0.46
0.06 1.05 0.05 0.25 3.17 0.38 0.58

NOTE: The standard error of power entries is bounded by 0.016 calculated based on 1000 simulations. SNR (signal-to-noise ratio) is n‖�β‖2/{
√

2 tr(�2)σ 2}.

Table 4. Empirical size and power of the EB test and the proposed test (new) for H0 :β = 0p×1 vs H1 :β �= 0p×1 at significant level 5%
for centralized gamma residual

T = 10 T = 20

(n,p) ‖β‖2 SNR EB New SNR EB New

(a) Non-sparse case
(40, 310) 0.00 (size) 0.00 0.01 0.06 0.00 0.01 0.06

0.02 0.30 0.01 0.12 1.99 0.24 0.45
0.04 0.61 0.03 0.19 3.99 0.52 0.70
0.06 0.92 0.05 0.24 5.98 0.69 0.83

(60, 400) 0.00 (size) 0.00 0.01 0.04 0.00 0.01 0.04
0.02 0.49 0.02 0.13 2.51 0.35 0.57
0.04 0.98 0.05 0.24 5.03 0.65 0.82
0.06 1.47 0.10 0.36 7.54 0.82 0.93

(80, 550) 0.00 (size) 0.00 0.01 0.05 0.00 0.02 0.05
0.02 0.55 0.03 0.16 4.02 0.67 0.82
0.04 1.11 0.07 0.23 8.05 0.91 0.97
0.06 1.66 0.16 0.40 12.08 0.97 0.99

(a) Sparse case
(40, 310) 0.02 0.16 0.01 0.08 0.58 0.05 0.16

0.04 0.32 0.01 0.10 1.17 0.11 0.25
0.06 0.48 0.02 0.14 1.75 0.14 0.33

(60, 400) 0.02 0.27 0.02 0.09 0.60 0.04 0.15
0.04 0.54 0.02 0.12 1.21 0.10 0.25
0.06 0.82 0.04 0.20 1.82 0.18 0.38

(80, 550) 0.02 0.35 0.01 0.10 1.05 0.10 0.24
0.04 0.70 0.03 0.17 2.11 0.27 0.48
0.06 1.05 0.06 0.25 3.17 0.39 0.60

NOTE: The standard error of power entries is bounded by 0.016 calculated based on 1000 simulations. SNR (signal-to-noise ratio) is n‖�β‖2/{
√

2 tr(�2)σ 2}.
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Figure 2. The null distributions of standardized Tn,p. The online version of this figure is in color.

plots in Figure 2. The power of the proposed test were increased
quite rapidly as the SNR was increased. In contrast, the EB test
suffered from rather severe size distortion for all cases consid-
ered. At the meanwhile, the power of the EB test endured very
low power when T = 10. This alarming performance may be
due to the fact that its justification as in Goeman, Finos, and van
Houwelingen (2009) was made for p being fixed while n → ∞.

Considering that the proposed test is an asymptotic test, we
plotted in Figure 2 the kernel density estimates for the standard-
ized test statistics of proposed test under H0 for T = 10 and
compared them with the standard normal distribution. It shows
that the null distribution was quite close to that of N(0,1),

which confirmed the asymptotic null distribution of the stan-
dardized test statistic given in Theorem 3. There was some right
skewness when p is less than n. However, as p was increased,
this skewness was largely reduced when p was increased.

The second set of the simulations were designed to under-
stand performance of the proposed test under the factorial de-
signs. We simulated a two-factor balanced design with two lev-
els for each factor:

Yijk = αij + X′
ijkβ + εijk, k = 1,2, . . . ,nc (6.3)

where c = 2(i − 1) + j and i, j = 1,2, corresponding to (i, j)th
cell and the parameters (α11, α12, α21, α22) = (1,3,3,4). The
sparsity setups for β were the same to those for simple random
designs used in (6.1). Within each cell, independent and iden-
tically distributed p-dimensional Xijk were generated from the
moving average model (6.2) with T = Tc, where Tc equals to
10,15,20, and 25 for c = 1,2,3,4, respectively. Using the dif-
ferent T values was to generate different dependence structure
in �. We assigned the nc = 20 and 30 in all cells, and three
values of p: 100,150, and 200. The simulation results for the
proposed test are summarized in Table 5. We observe that the
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Table 5. Empirical size and power of the proposed test for H0 :β = 0p×1 in a 2 × 2 factorial design with n1 = 20 and n2 = 30
replicates in each cell

Non-sparse Sparse

p ‖β‖2 SNRf n1 SNRf n2 SNRf n1 SNRf n2

(a) Normal residuals
100 0.00 (size) 0.00 0.06 0.00 0.06 0.00 0.07 0.00 0.05

0.02 3.05 0.65 4.58 0.85 0.70 0.20 1.06 0.26
0.04 6.10 0.88 9.16 0.98 1.41 0.29 2.12 0.48
0.06 9.16 0.96 13.74 1.00 2.12 0.44 3.18 0.65

150 0.00 (size) 0.00 0.06 0.00 0.06 0.00 0.05 0.00 0.06
0.02 2.59 0.57 3.89 0.77 0.57 0.15 0.85 0.21
0.04 5.18 0.84 7.78 0.97 1.14 0.28 1.71 0.39
0.06 7.78 0.94 11.67 0.99 1.71 0.35 2.57 0.54

200 0.00 (size) 0.00 0.07 0.00 0.06 0.00 0.07 0.00 0.06
0.02 2.28 0.50 3.43 0.73 0.49 0.14 0.73 0.18
0.04 4.57 0.78 6.86 0.94 0.98 0.22 1.47 0.35
0.06 6.86 0.89 10.29 0.99 1.47 0.31 2.21 0.48

(b) Gamma residuals
100 0.00 (size) 0.00 0.07 0.00 0.05 0.00 0.07 0.00 0.06

0.02 3.05 0.66 4.58 0.83 0.70 0.15 1.06 0.28
0.04 6.10 0.86 9.16 0.97 1.41 0.31 2.12 0.48
0.06 9.16 0.95 13.74 0.99 2.12 0.47 3.18 0.66

150 0.00 (size) 0.00 0.07 0.00 0.05 0.00 0.04 0.00 0.06
0.02 2.59 0.57 3.89 0.78 0.57 0.16 0.85 0.22
0.04 5.18 0.81 7.78 0.96 1.14 0.28 1.71 0.39
0.06 7.78 0.93 11.67 0.99 1.71 0.37 2.57 0.57

200 0.00 (size) 0.00 0.05 0.00 0.06 0.00 0.06 0.00 0.05
0.02 2.28 0.53 3.43 0.74 0.49 0.14 0.73 0.18
0.04 4.57 0.77 6.86 0.93 0.98 0.24 1.47 0.32
0.06 6.86 0.89 10.29 0.98 1.47 0.30 2.21 0.48

NOTE: The standard error of power entries is bounded by 0.016 calculated based on 1000 simulations. The SNRf = nc(
∑

c ‖�cβ‖2)/(σ 2
√∑

c 2 tr(�2
c )).

sizes of the proposed test were satisfactorily around 0.05. The
power of the test increased as the SNRf , the factorial design
version of SNR, was increased. When the sample size was in-
creased from 20 to 30, we observed significant increase in the
power under all settings.

7. ASSOCIATION TEST FOR GENE SETS

We applied the proposed test for association between gene
sets and certain clinical outcomes in a randomized factorial de-
sign experiment applied to 24 six-month-old Yolkshire gilts.
The gilts were genotyped according to the melanocortin-4 re-
ceptor gene, 12 of them with D298 and the other with N298.
Two diet treatments were randomly assigned to the 12 gilts in
each genotype. One treatment is ad libitum (no restrictions) in
the amount of feed consumed; the other is fasting. More de-
tails of the experiment could be found at Lkhagvadorj et al.
(2009). The genotypes and the diet treatments were the two fac-
tors in the factorial experiments. The purpose of our study was
to identify associations between gene sets and triiodothyronine
(T3) measurement, a vital thyroid hormone that increases the
metabolic rate, protein synthesis, and stimulates breakdown of
cholesterol.

The gene expression values were obtained for 24,123 genes
in liver and adipose tissues, as well as measurements of T3 in

the blood on each gilt. Gene sets are defined by Gene Ontol-
ogy (GO term) (The Gene Ontology Consortium 2000), which
classifies genes into different sets according to their biological
functions among three broad categories: cellular component,
molecular function, and biological process. The dataset con-
tained 6176 GO terms. Our objective is to find the GO terms
which are significantly correlated with T3 after accounting for
the design factors.

Let i, j, k be indices for treatment, genotype and observations,
respectively. For instance, Yijk denote the T3 measurement for
the kth gilt in the ith treatment with jth genotype, and Xg

ijk be the
corresponding pg-dimension gene expressions for the gth GO
term. We consider the following four models corresponding to
four types of designs:

Design I: Yk = α + Xg′
k βg + ε

g
k , k = 1, . . . ,24;

Design II: Yik = α + μi + Xg′
ikβ

g + ε
g
ik, k = 1, . . . ,12;

Design III: Yjk = α + τj + Xg′
jkβ

g + ε
g
jk, k = 1, . . . ,12;

Design IV: Yijk = α + μi + τj + μτij + Xg′
ijkβ

g + ε
g
ijk, k =

1, . . . ,6;
for i = 1,2, j = 1,2, and g = 1, . . . ,G where G = 6176 is the
total number of the GO terms, μi stand for diet treatment ef-
fects, τj for genotype effects and μτij represent the interaction
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between treatment and genotype. For each GO term, we tested
for

H0 :βg = 0 vs H1 :βg �= 0.

Among the 6176 GO terms, the dimension pg of the gene sets
ranged from 1 to 5158, and many of the gene sets shared com-
mon genes. Hence, there were both high dimensionality and
multiplicity. We applied the proposed high-dimensional test for
pg ≥ 5 and the F-test for pg < 5. Without confusion, we call this
combination of the proposed high-dimensional test and F-test
as the proposed test in this section. For comparison purposes,
the Empirical Bayes test was also carried out.

Figures 3 and 4 display histograms of p-values of the pro-
posed tests and the EB tests under the four designs (I–IV) for
all the gene sets, respectively. Both Figures 3 and 4 show that
the histograms for Designs I and III were very similar, so were
the histograms of Designs II and IV. This was confirmed by Fig-
ure 5 where we plots the histograms for the differences in the
p-values from the proposed tests. We observed that the p-values
from Design I and III had higher portion of small p-values than
those under Design II and IV. These features show that the form
of design is important and it is necessary to account for different
designs into the analysis.

By controlling the false discover rate (FDR) for the p-values
from the proposed tests at 5%, 129, 23, 51, and 40 GO terms
were declared statistically significant under designs I–IV, re-
spectively. We list in Table 6 significant GO terms identified
by the proposed tests under at least three designs, together with
their p-values and dimensions. They include GO terms that sig-
nificant under all four designs: GO:0005086, GO:0007528, and
GO:0032012. GO:0005086 is related to the molecular function,
which stimulates the exchange of guanyl nucleotides associated
with the GTPase ARF. GO:0007528 belongs to the biological

Figure 3. Histograms of the p-values on all GO terms using the
proposed tests.

Figure 4. Histograms of the p-values on all GO terms using Empir-
ical Bayes (EB) tests.

process category. Its role in the progression of the neuromus-
cular junction over time, whose association with T3 was dis-
covered by other authors including Kawa and Obata (1982).
GO:0032012 also belongs to the biological process, which was
also found significant by the EB test.

The EB tests detected one significant GO term for each de-
sign: GO:0032012 for Designs I and III, and GO:0004731 for
Designs II and IV. They were all among the significant GO
terms discovered by the proposed tests. That the EB test de-
tected quite few gene sets is not entirely unexpected as our sim-
ulation has shown it tends to have relative low power.

APPENDIX: TECHNICAL DETAILS

In this appendix, we give technical proofs for the results we pre-
sented in Sections 2 and 4. We will use δβ = β − β0 through the ap-
pendix.

Proof of Theorem 1

Let γ0 = (α,βτ
0 )τ . By plugging in the least square estimate γ̂ , we

could write the F-statistics in (2.3) as

Gn,p = (Y − Uγ0)′PAu(Y − Uγ0)/p

Y′(In − PU)Y/(n − p − 1)
,

where PAu = U(U′U)−1A′(A(U′U)−1A′)−1A(U′U)−1U′, PU = U×
(U′U)−1U′ and P1 = 11′/n be the projection matrices of U(U′ ×
U)−1A′, U and 1 respectively. By applying the matrix inverse formula
on (U′U)−1, U(U′U)−1A′ = (I − P1)X{X′(I − P1)X}−1. It then fol-
lows that PAu = (I − P1)X(X′(I − P1)X)−1X′(I − P1).

Since PAu(I −PU) = 0, the numerator and the denominator of Gn,p
are independent, and PAu is an idempotent matrix with rank p. We may
write

p

n − p − 1
Gn,p

d= {Qε + Q(U(γ − γ0))}′ diag(1′
p,0′

n−p){Qε + Q(U(γ − γ0))}
z′

1z1
,
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Figure 5. Differences in the p-values among Designs I–IV.

where ε = (ε1, . . . , εn)′ ∼ N(0, In) and z1 ∼ N(0, In−p−1) are inde-
pendent random variables, and Q is an orthogonal matrix such that

PAu = Q′ diag(1′
p,0′

n−p)Q. Here
d= means the two random vectors on

either side have the same distribution. Write Q = (Q1,Q2, . . . ,Qn)′.
Note that Qε

d= ε. Furthermore, write pGn,p/(n − p − 1) as
p

n − p − 1
Gn,p

d=
p∑

i=1

{ε2
i + 2εiQ

′
iXδβ }/z′

1z1 + δ′
βX′PAuXδβ/z′

1z1, (A.1)

where X′PAuX = X′(I − P1)X = �Z′(I − P1)Z�′ and Z = (Z1, . . . ,

Zn)′.
For the numerator of the (A.1), we can show that under Model (2.4),

E{δ′
βX′PAuXδβ } = (n−1)δ′

β�δβ . It is easy to see that E{∑p
i=1 εiQ′

i ×
Xδβ } = 0 and

var

{ p∑
i=1

εiQ
′
iXδβ

}
= (n − 1)σ 2δ′

β�δβ. (A.2)

It can be shown that

var{δ′
βX′PAuXδβ } = 2(n − 1)(δ′

β�δβ)2

+ (n + 2 + 1/n)	 tr(A1 ◦ A1). (A.3)

Direct calculation shows that E( 1
z1

′z1
) = 1/(n − p − 3) and

E( 1
z1

′z1
)2 = 1/{(n − p − 3)(n − p − 5)}. Equation (A.2) implies that∑p

i=1 εiQ′
iXδβ/z′

1z1 = Op{ 1√
n

√
δ′
β�δβ } and note that E(X′PAuX) =

(n − 1)�. Then (A.3) yields

δ′
βX′PAuXδβ

z′
1z1

=
δ′
β�δβ

1 − ρ
+ Op

{
1√
n
δ′
β�δβ

}
.

If δ′
β�δβ = o(1), then

p

n − p − 1
Gn,p

d=
p∑

i=1

ε2
i

z′
1z1

+
δ′
β�δβ

1 − ρ
+ op

(
n−1/2)

.

Table 6. p-values of the GO terms which are significant under at least three designs using the proposed test, and their number of genes

GO term Design I Design II Design III Design IV No. of genes

GO:0004115 3.253E–04 2.774E–06 1.992E–06 8
GO:0005086 2.345E–10 1.945E–05 7.220E–06 1.629E–05 14
GO:0005677 1.082E–04 3.102E–06 7.575E–05 5
GO:0006342 3.068E–04 3.444E–06 5.951E–05 5
GO:0007528 1.110E–16 7.922E–07 2.235E–08 3.203E–04 8
GO:0017136 1.082E–04 3.102E–06 7.575E–05 5
GO:0032012 0.000E–04 2.586E–06 2.746E–10 5.418E–06 12
GO:0050909 1.545E–09 3.842E–05 4.216E–05 5
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From Bai and Saranadasa (1996),

p

n − p − 1
Fp,n−p−1;α = ρn

1 − ρn
+

√
2ρ

(1 − ρ)3n
zα + o

(
n−1/2)

,

where zα is the α quantile of N(0,1) and it can be shown√
(1 − ρ)3n

2ρ

( p∑
i=1

ε2
i

z′
1z1

− ρn

1 − ρn

)
d→ N(0,1).

Therefore the power of the F-test is

F(‖β − β0‖) = P

(
p

n − p − 1
Gn,p >

p

n − p − 1
Fp,n−p−1;α

)

= P

{√
(1 − ρ)3n

2ρ

( p∑
i=1

ε2
i

z′
1z1

− ρn

1 − ρn

)

> zα −
√

(1 − ρ)3n

2ρ

δ′
β�δβ

1 − ρ
+ op(1)

}

= �

(
−zα +

√
(1 − ρ)n

2ρ
δ′
β�δβ

)
+ o(1).

Proof of Theorem 2

It is straightforward to show that E(Tn,p) = ‖�δβ‖2. To derive
var(Tn,p) we need to derive the variance of h1,h2,h3, and h and then
apply the variance decomposition given in (3.2).

Let A0 = �′�, A1 = �′δβδ′
β�, A2 = �′�δβδ′

β��, A3 = �′��,

and Bi = δ′
β�iδβ . It can be shown that

ζ1 = 1
4 B1B3 + 1

4σ 2B3 + 1
4 B2

2 + 1
4	 tr(A1 ◦ A2). (A.4)

We can also show that

ζ2 = 1
36

{
σ 4 tr(�2) + 21B2

2 + 22B1B3 + 22σ 2B3

+ B2
1 tr(�2) + 2σ 2 tr(�2)B1 + 2	{B1 + σ 2} tr(A1 ◦ A3)

+ 20	 tr(A1 ◦ A2) + 	2 tr{A0 diag(A1)}2}
. (A.5)

As ζ4 ≥ ζ3, we first derive ζ4. It may be shown that

ζ4 = 1
24

{
12σ 4 tr(�2) + 45B2

2 + 65B1B3 + 40σ 2B3

+ 10B2
1 tr(�2) + 24σ 2 tr(�2)B1

+ 12	{B1 + σ 2} tr(A1 ◦ A3)

+ 37	 tr(A1 ◦ A2) + 4	2 tr{A0 diag(A1)}2}
. (A.6)

Note that (A.5) and (A.6) show that ζ2 and ζ4 are both the lin-
ear combination of tr(�2),B2

2,B1B3,B3,B2
1 tr(�2),B1 tr(�2), (B1 +

σ 2) tr(A1 ◦ A3), tr(A1 ◦ A2), and tr{A0 diag(A1)}2. So it implies that
ζ2 and ζ4 are of the same order. By Proposition 1, ζ2, ζ3, and ζ4 are
of the same order. Hence, the third and fourth term in the Hoeffd-
ing decomposition are all of smaller order. Thus var(Tn,p) = { 16

n ζ1 +
72

n(n−1)
ζ2}{1 + o(1)}. Substituting ζ1 and ζ2, the results in Theorem 2

follow.
The following two inequalities will be useful in the proof of The-

orem 3. By the Cauchy–Schwarz inequality together with (A.4) and
(A.5), we have

ζ1 ≤ {( 1
2 + 1

4	
)
B1 + 1

4σ 2}
B3, (A.7)

ζ2 ≤ 1
36

{[σ 2 + (	 + 1)B1]2 tr(�2)

+ [22σ 2 + (43 + 20	)B1]B3
}
. (A.8)

Proof of Theorem 3

Let

T̂n,p − ‖�δβ‖2 = 12

n(n − 1)

∑
1≤i1<i2≤n

h̃2
(
Wi1 ,Wi2

)
(A.9)

be the projection of Tn,p. We can decompose Tn,p −‖�δβ‖2 = T̂n,p −
‖�δβ‖2 + (Tn,p − T̂n,p), where Tn,p − T̂n,p can still be written as a
U-statistics with kernel

H(W1,W2,W3,W4)

= h̃(W1,W2,W3,W4) −
∑

1≤i1<i2≤4

h̃2(Wi1 ,Wi2 ). (A.10)

The projections of H are H1(w1) = −2h̃1(w1), H2(w1,

w2) = −2
∑2

i=1 h̃1(wi), and H3(w1,w2,w3) = h̃3(w1,w2,w3) −∑3
i=1 h̃1(wi) − ∑

1≤i<j≤3 h̃2(wi,wj). Thus if the null hypothesis or

the local alternatives conditions (4.2) hold, var(h1) = o(n−1ζ2). By
Hoeffding’s variance formula, var(T̂n,p) = O(n−2ζ2) and var(Tn,p −
T̂n,p) = o(n−2ζ2). Here we used the fact that ζ2, ζ3, and ζ4 are of the
same order as we have shown in Theorem 2. Thus,

Tn,p − ‖�δβ‖2√
var(T̂n,p)

= T̂n,p − ‖�δβ‖2√
var(T̂n,p)

+ op(1).

Hence we only need to show that

T̂n,p − ‖�δβ‖2√
var(T̂n,p)

d→ N(0,1). (A.11)

From (A.9), T̂n,p − ‖�δβ‖2 = T̂(1)
n,p + T̂(2)

n,p where

T̂(1)
n,p =

(
n
2

)−1 ∑
1≤i<j≤n

{[δ′
β(Xi − Xj) + (εi − εj)](Xi − Xj)

′�δβ

+ [δ′
β(XiX

′
i + �) + εiX

′
i](XjX

′
j + �)δβ

+ εjX
′
j(XiX

′
i + �)δβ

} − 6‖�δβ‖2

and T̂(2)
n,p = (n

2
)−1 ∑

1≤i<j≤n εiεjX′
iXj. Under the assumptions of this

theorem and following (A.7) and (A.8), var(T̂n,p) = var(T̂(2)
n,p){1 +

o(1)} and T̂(1)
n,p/

√
var(T̂n,p) = op(1). To prove the theorem, we only

need to show

T̂(2)
n,p

/√
var

(
T̂(2)

n,p
) =

√(
n
2

)
T̂(2)

n,p
/√

σ 4 tr(�2)
d→ N(0,1). (A.12)

Now write T̃nk =
√(n

2
)
T̂(2)

n,p = ∑k
i=2 Zni and T̃nn = T̃n,p, where

Zni = ∑i−1
j=1 εiεjX′

iXj/
√(n

2
)
. Let Fi = σ {(X1

ε1

)
, . . . ,

(Xi
εi

)} be the σ -field

generated by {(Xτ
j , εj), j ≤ i}. It is easy to see that E(Zni|Fi−1) = 0

and it follows that {T̃nk,Fk : 2 ≤ k ≤ n} is a zero mean martingale. Let
vni = E(Z2

ni|Fi−1),2 ≤ i ≤ n, and Vn = ∑n
i=2 vni. The central limit

theorem will hold (Hall and Heyde 1980) if we can show

Vn

var(T̃n,p)

p→ 1 (A.13)

and for any ε > 0

n∑
i=1

σ−4 tr−1(�2)E
{
Z2

niI
(|Zni| > εσ 2

√
tr(�2)

)|Fi−1
} p→ 0. (A.14)
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It can be shown that vni = (n
2
)−1

σ 2{∑i−1
j=1 ε2

j X′
j�Xj + 2 ×∑

1≤j<k<i εjεkX′
j�Xk} and

Vn

var(T̃n,p)
= 1( n

2
)2 tr(�2)σ 2

×
{n−1∑

j=1

jε2
j X′

j�Xj + 2
∑

1≤j<k≤n

εjεkX′
j�Xk

}

= Cn1 + Cn2, say.

We know that E(Cn1) = 1 and

var(Cn1) = 1( n
2
)4 tr2(�2)σ 4

E

{n−1∑
j=1

j2(ε4
j (X′

j�Xj)
2 − tr2(�2)σ 4)

}
.

As tr(�4) = o{tr2(�2)} implies E{(X′
j�Xj)

2} = o(n) tr2(�2). Hence,

var(Cn1) → 0 and Cn1
p→ 1. Similarly, E(Cn2) = 0 and

var(Cn2) = 4( n
2
)4

{ n∑
i=3

(
i
2

)
+

n−1∑
i=3

(n − i)

(
i
2

)}
tr(�4)

tr2(�2)
.

Thus, tr(�4) = o{tr2(�2)} implies Cn2
p→ 0. In summary, (A.13)

holds.
It remains to show (A.14). Since

E
{
Z2

niI
(|Zni| > εσ 2

√
tr(�2)

)|Fi−1
} ≤ E(Z4

ni|Fi−1)/(ε2σ 4 tr(�2)),

by the law of large numbers, we only need to prove that

n∑
i=1

E(Z4
ni) = o{σ 4 tr2(�2)}. (A.15)

Let κ4 = E(ε4) which is assumed to be finite. Then

n∑
i=1

E(Z4
ni)

≤
(

n
2

)−1
κ2

4
(
3 tr2(�2) + (6 + 6	 + 	2) tr(�4)

)
+

(
n
2

)−2 1

3
(n3 − 3n2 + 2n)κ4σ 4(

tr2(�2) + (2 + 	) tr(�4)
)
.

Under the assumption that tr(�4) = o{tr2(�2)}, (A.15) follows imme-
diately. This completes the proof.

Power Under Fixed Alternative (4.7)

In this part, we consider two scenarios of fixed alternatives un-
der (4.7) mentioned in Section 4. One is

δ′
β�3δβ = o

{
1

n
δ′
β�δβ tr(�2)

}
, (A.16)

which complements (4.2). If δ′
β�δβ is truly bounded, (A.16) implies

δ′
β�3δβ = o{ 1

n tr(�2)} which mimics the second part of (4.2).
A complement to both (4.2) and (A.16) is

1

n
δ′
β�δβ tr(�2) = o{δ′

β�3δβ }. (A.17)

If δ′
β�δβ is bounded, (A.17) implies 1

n tr(�2) = o{δ′
β�3δβ }, which

prescribes a larger discrepancies between β and β0. Without causing
much confusion, we call both (A.16) and (A.17) under (4.7) as fixed
alternatives.

To quantify the asymptotic power, we define

σ 2
A1

= 2σ 4 tr(�2) + 2B2
1 tr(�2) + 4σ 2 tr(�2)B1

+ 4	(B1 + σ 2) tr(A1 ◦ A3) + 2	2 tr
{
(A0 diag(A1))2}

and

σ 2
A2

= (B1 + σ 2)B3 + B2
2 + 	 tr(A1 ◦ A2).

We note that σ 2
A1

is part of the variance of Mn2, where we only keep

the leading order terms under (A.16) and σ 2
A2

is the same as ζ∗
1 , the

variance of Mn1 up to a constant.

Theorem A. Assume Model (2.4), Conditions (2.8) and (4.7),
then (i) under the first fixed alternatives (A.16)

n

σA1

(Tn,p − ‖�δβ‖2)
d→ N(0,1); (A.18)

(ii) under the second fixed alternatives (A.17)
√

n

σA2

(Tn,p − ‖�δβ‖2)
d→ N(0,1). (A.19)

The proof of Theorem A is contained in a longer version of this
article. The theorem implies that the asymptotic power of the test under
the first fixed alternatives (A.16) is

H1(‖δβ‖) .= �

(
−

√
2 tr(�2)σ 2zα

σA1

+ n‖�δβ‖2

σA1

)
. (A.20)

Since B1 is not o(1) and σ 2
A1

> 2B2
1 tr(�2), the first term

√
2 tr(�2) ×

σ 2zα/σA1 < σ 2zα/B1 is always bounded from infinity. In particular, if
B1 diverges to ∞, the first term converges to 0. Hence, the test attains
at least 50% power in this case. If n‖�δβ‖2/σA1 → ∞, the power
converges to 1.

The asymptotic power under the second fixed alternatives (A.17) is

H2(‖δβ‖) .= �

(
−

√
2 tr(�2)σ 2zα√
(n − 1)σ 2

A2

+
√

n‖�δβ‖2

σA2

)
.

As (A.17) implies 1
n tr(�2)/σ 2

A2
= o(1), the proposed test is consistent

as long as
√

n‖�δβ‖2/σA2 → ∞. (A.21)

Even if
√

n‖�δβ‖2/σA2 does not converge to ∞, the power is still at
least 50% asymptotically. The power of the test under the fixed alter-
natives attains at least 50% power is assuring and it can be shown that
the proposed test is more powerful under two fixed alternatives than
the local alternative if all the eigenvalues are of the same order. It is
also the reason that we call the two alternatives in (A.16) and (A.17)
as fixed alternatives. It may be shown that a sufficient condition for
(A.21) is λp/λ1 = o(n).

[Received May 2010. Revised September 2010.]
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