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Abstract

We propose a varying coefficient Susceptible-Infected-Removal (vSIR) model
that allows changing infection and removal rates for the latest corona virus
(COVID-19) outbreak in China. The vSIR model together with proposed es-
timation procedures allow one to track the reproductivity of the COVID-19
through time and to assess the effectiveness of the control measures imple-
mented since Jan 23 2020 when the city of Wuhan was lockdown followed by
an extremely high level of self-isolation in the population. Our study founds
that the reproductibility of COVID-19 has been significantly slowed down in
the three weeks from January 27 to February 17th with 96.3% and 95.1%
reductions in the effective reproduction numbers R among the 30 provinces
and 15 Hubei cities, respectively. Predictions to the ending times and the to-
tal numbers of infected are made under three scenarios of the removal rates.
The paper provides a timely model and associated estimation and prediction
methods which may be applied in other countries to track, assess and predict
the epidemic of the COVID-19 or other infectious diseases.
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1. Introduction1

The Corona Virus Disease 2019 (COVID-19) has created a profound pub-2

lic health emergency in China and has spread to 25 countries so far (World3

Health Organization (WHO), 2020). It has become an epidemic with more4

than 76,000 confirmed infections and 2,244 reported deaths worldwide as on5

February 20 2020. The COVID-19 is caused by a new corona viruses that is6

genetically similar to the viruses causing severe acute respiratory syndrome7

(SARS) and Middle East respiratory syndrome (MERS). Despite a relatively8

lower fatality rate comparing to SARS and MERS, the COVID-19 spreads9

faster and infects much more people than the SARS-03 outbreak.10

The city of Wuhan, the origin of the outbreak, has been locked up to11

reduce population movement since January 23 in an effort to stop the spread12

of the epidemic, followed by more than 50 prefecture level cities (as on 8th13

of February) and countless number of towns and villages in China. A high14

percentage of the population are exercising self-isolation in their homes. The15

spring festival holiday period had been extended with all schools and uni-16

versities closed and all students staying where they are indefinitely. The17

country is virtually in a stand-still, and the economy and people’s livelihood18

have been severely affected by the epidemic.19

There is an urgent need to assess the speed of the disease transmission and20

to check if the existing containment measures have successfully slowed down21

the spread of the disease or not. The Susceptible-Infected-Removal (SIR)22

model (Kermack and McKendrick, 1927) and its generalizations, for instance23

the Susceptible-Exposed-Infected-Removal (SEIR) model (Hethcote, 2000)24

with four or more compartments are commonly used to model the dynamics25

of infectious disease outbreaks. See (Becker, 1977; Becker and Britton, 1999;26

Yip and Chen, 1998; Ball and Clancy, 1993) for statistical estimation and27

inference for stochastic versions of the SIR model. SEIR models have been28

used to produce early results on COVID-19 in (Wu et al., 2020; Read et al.,29

2020; Tang et al., 2020), which produced the first three estimates of the30

basic reproduction number R0: 2.68 by (Wu et al., 2020), 3.81 by (Read31

et al., 2020) and 6.47 by (Tang et al., 2020). The R0 is the expected number32

of infections by one infectious person over his/her infectious period at the33

start of the epidemic, which is closely connected to the effective reproduction34

number Rt. The latter Rt is the expected number of infections by one infected35

over infectious period at time t of the epidemic. Both R0 and Rt are key36

measures of an epidemic. For fixed coefficient models, if R0 < 1, the epidemic37
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will die down eventually with the speed of the decline depends on the size of38

R0; otherwise, the epidemic will explode until it runs out of its course.39

The SEIR models that was employed in the above three cited works for the40

COVID-19 assume constant model coefficients, implying a constant regime of41

transmission during the course of the epidemic. This is idealistic for modeling42

COVID-19 as it cannot reflect the intervention measures by the authorities43

and the citizens, which should have made the infectious rate (β) and the44

effective reproduction number (Rt) varying with respect to time. Here, the45

effective reproductive number Rt is the average number of secondary infec-46

tions made by each infectious case during an epidemic, which contrasts the47

basic reproductive numberR0 that measures the average number of secondary48

infections at the beginning of an epidemic.49

To reflect the changing dynamic regimes due to the strong government50

intervention and the self protective reactions by citizens, we propose a varying51

coefficient SIR (vSIR) model. The vSIR model is easy to be implemented via52

the locally weighted regression approach (Cleveland and Devlin, 1988) that53

produces estimates with desired smoothness, and yet is able to capture the54

changing dynamics of COVID-19’s reproduction, with guaranteed statistical55

consistency and needed standard errors. The consistent estimator and its56

confidence interval are proposed for estimating the trend of R, assessing the57

effectiveness of infection control, and predicting the ending time and the final58

number of infection cases with 95% prediction intervals.59

As COVID-19 is quickly spreading outside China, the vSIR model and60

the associated estimation and prediction methods may be applied to other61

countries to track, assess and predict the epidemic of the COVID-19 or other62

infectious diseases.63

2. Main Results64

By applying the vSIR model, we produce daily estimates of the infectious65

rate β(t) and the effective reproduction number RD
t (t denotes time) based66

on three values of infectious duration D: 7, 10.5 and 14 days for 30 provinces67

and 15 major cities (including Wuhan) in Hubei province from January 2168

or a later date between January 24-29 depending on the first confirmed case69

to February 17.70

• Despite the total number of confirmed cases and the death are increas-71

ing, the spread of COVID-19 has shown a great slowing down in China72
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within the two weeks from January 27 to February 17 as shown by73

96.3% and 95.1% reductions in the effective reproduction number Rt74

among the 30 provinces and the 15 cities in Hubei, respectively.75

• The average R14
t (based on 14-day infectious duration) on January 27th76

was 6.14 (1.49) and 7.59 (2.38), respectively, for the 27 provinces and77

the 7 Hubei cities with confirmed cases by January 23rd. The numbers78

in the parentheses are the standard error. One week later on Febru-79

ary 3rd, the R14
t was averaged at 2.18 (0.67) for the 30 provinces and80

2.84 (0.59) for the 15 Hubei cities, representing 64.5% and 62.6% re-81

ductions, respectively, over the 7 days. On February 10th, the average82

R14
t dropped further to 0.86 (0.38) for the 30 provinces and 1.23 (0.55)83

for the 15 Hubei cities, which were either below or close to the critical84

threshold level 1.85

• On February 17th, the averageR14
t has reached 0.23(0.15) and 0.37(0.24)86

for the 30 provinces and the 15 Hubei cities, with 22 provinces’ and 887

Hubei cities’ R14
t being statistically significantly below 1 for more than88

7 days. These indicate a further slowing down in the re-productivity89

of COVID-19 in China in the week from February 10 to 17.90

• The profound slowing down in the reproductivity of COVID-19 can91

be attributed to a series of containment measures by the government92

and the public, which include cutting off Wuhan and other cities from93

January 23, a rapid public awareness of the epidemic and the extensive94

self protection taken and high level of self isolation at home exercised95

over a much extended Spring Festival holiday period.96

• There are increasing numbers of provinces and cities in Hubei whose97

14-day Rt has been statistically below 1, as detailed in Table 1, which98

would foreshadow the coming of the turning point for containment of99

the epidemic, if the control measures implemented since January 23100

can be continued.101

• If the recovery rate can be increased to 0.1 meaning the average recover102

time is 10 days after diagnosis, the number of infected patients I(t) will103

be dramatically reduced in March, and the epidemic will end in April104

for non-Hubei provinces and end in June for Hubei.105
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3. Time-varying coefficient SIR model106

Let S(t), I(t) and R(t) be the counts of susceptible, infected and removed107

(including dead) persons in a given city or province at time t, respectively.108

Let N be the total population of the city/province. We propose a varying109

coefficient Susceptible-Infected-Removed (vSIR) model for the conditional110

means of the Poisson increments ∆I(t) and ∆R(t) given I(t) and R(t). This111

vSIR-Poisson framework permits estimating the parameters and the effective112

reproduction number Rt for the dynamics of COVID-19, which are then used113

for predicting the future spread of the disease.114

The SIR model (Kermack and McKendrick, 1927) is a commonly used115

epidemiology model for the dynamic of susceptible S(t), infected I(t) and116

recovered R(t) as a system of ordinary differential equations (ODEs). Here117

we consider a generalized version of the SIR model in that the infectious118

rate β and the removal rate γ may vary with respect to time so that the119

deterministic ODEs are120

dS(t)

dt
= −β(t)I(t)

S(t)

N
,

dI(t)

dt
= β(t)I(t)

S(t)

N
− γ(t)I(t), (1)

dR(t)

dt
= γ(t)I(t),

where β(t) and γ(t) are unknown infection and the removal rate functions,121

respectively. Once an individual is removed, including dead, the individual122

can not return to the susceptible group.123

The rationale for using a time-varying β(t) function, rather than a con-124

stant β, is that β(t) is the average rate of contact per unit time multiplied125

by the probability of disease transmission per contact between a suscepti-126

ble and an infectious subject. Due to an increasing public awareness of the127

epidemic and the control measures as mentioned earlier, both the transmis-128

sion probability and the contact rate have been largely reduced. These favor129

for a time-varying β(t), which are also confirmed by the sharp declined in130

RD
t = β(t)D, where D denote the infectious durations in Figures 1 and 2.131

The removal rate also changes over time as treatments improve over time as132

shown in Figure 3. However, Figure 3 shows γ(t) is much slowly changing133

for most of the provinces, which led us to treat γ(t) = γ at the early stage of134

the outbreak, whose value gradually increased as the recover rate improved135

as the time progress and better treatments are available.136
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The deterministic vSIR model as specified by the ODEs in (1) speci-137

fies the conditional means of the Poisson increments ∆I(t) and ∆R(t) given138

S(t), I(t) and R(t) at each discrete time point t. This conditional mean139

specification leads to a Poisson-vSIR model framework, which can be used140

to construct conditional likelihood for (β(t), γ(t)) over moving time windows141

and leads to statistical inference for the effective reproduction ratio estima-142

tion and its standard error. The Poisson-vSIR framework is also the basis143

for the bootstrap re-sampling algorithm that we will propose for generating144

predictive intervals.145

SEIR model is an extension of SIR with an added compartment E for the146

exposed between S and I. A time-varying SEIR model (vSEIR) satisfies the147

ODEs148

dS(t)

dt
= −β(β)I(t)s(t),

dE(t)

dt
= β(t)I(t)s(t)− α(t)E(t), (2)

dI(t)

dt
= α(t)E(t)− γ(t)I(t),

dR(t)

dt
= γ(t)I(t),

where α(t) is the confirmation or diagnosis rate from E to I. The ODEs in149

(2) specifies the conditional means of the independent Poisson increments.150

However, like SIR model, the states before I are not infectious.151

The basic and the effective reproduction numbers (RN), R0 and Rt, are152

important notions in epidemiology as they quantify the reproduction ability153

of an epidemic at the start (R0) and during (Rt) an epidemic. For both SIR154

and SEIR models, R0 = R = β/γ (Hethcote, 2000). We are to demonstrate155

that for the vSIR model, R0 = β(0)/γ(0) and the effective RN Rt = β̃(t)/γ(t)156

at time t where β̃t = β(t)s(t) and s(t) = S(t)/N . The susceptible rate s(t)157

is approximately 1 at the start of an epidemic. However, s(t) < 1 has to be158

taken into account as the number of susceptibles declines.159

Figure 4 provides the vSIR and vSEIR epidemic progression networks160

from an initial I(0) infected and initial I(0) and E(0) infected, respectively.161

The figure also provides the According to the Poisson-vSIR model, at the162

start of the epidemic, conditioning on I(0), in average I(1) = (1 − γ(0) +163

β̃(0))I(0) > I(0) if and only if 1 − γ(t − 1) + β̃(t − 1) > 1, which is if and164

only if R0 = β̃(0)/γ(0) > 1. In general, at time t, conditioning on I(t − 1),165
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in average I(t) = (1 − γ(t − 1) + β̃(t − 1))I(t − 1) > I(t − 1) if and only if166

1 − γ(t − 1) + β̃(t − 1) > 1, which is the case iff the effective RN Rt−1 > 1.167

Thus, indeed, Rt can track the trend of an epidemic being expanding or168

shrinking. A similar argument can be made under the vSEIR model.169

4. Data170

Daily records of infected, dead and recovered patients released by National171

Health Commission of China (NHCC) are obtained from the NHCC website,172

with the first confirmed record for Wuhan on December 8th, 2019, followed173

by 30 provinces in mainland China and 15 cities in Hubei province where174

Wuhan is the capital city. We did not consider data from Tibet due to very175

small number of cases. Due to severe under-reporting in the first 39 days176

of the epidemics in Wuhan and Hubei, we consider data from January 16th177

for Wuhan and Hubei. For other provinces and Hubei cities, the starting178

dates for data are those of first confirmed case, and the analysis date starts179

four days after to accommodate the estimation approach for the infectious180

rate β(t). The latest start data for analysis was January 29th for Qinghai181

province and three cities in Hubei province. The second last analysis starting182

date was January 28th with two provinces and five Hubei cities. Table A1 in183

the Supplementary Information (SI) provides the starting dates of the data184

records and analysis for each province and Hubei city.185

To guide for the choice of the infectious duration D used when calculating186

the reproduction number, we consider two public data sources. The first one187

is obtained in Shenzhen Government Online, which contain datasets released188

by the Shenzhen Municipal Health Commission from January 19th to Febru-189

ary 13th (Shenzhen Municipal Affairs Service Data Administration, 2020).190

One dataset provides information on the confirmed cases that include the191

time of onset, time of hospital admission, cause of illness and other informa-192

tion of 391 cases, consisting 188 males and 203 females. The admission time193

of these cases ranged from January 9th to February 11th. Another Shen-194

zhen dataset reports the discharge times for 94 recovered cases, contianed in195

the former dataset. The second data source comes from Shaoyang Munici-196

pal Health Committee (Shaoyang Municipal Health Commission, 2020) with197

a dataset of 100 confirmed cases released on February 14 that includes 48198

male and 52 female patients with the onset dates ranging from January 12199

to February 11.200
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5. Estimation and Confidence Intervals201

The reported numbers of infected I(t) and removed cases R(t) are subject202

to measurement errors. To reduce the errors, we apply a three point moving203

average filter on the reported counts to obtain Ī(t) = 0.3I(t− 1) + 0.4I(t) +204

0.3I(t+ 1) for 2 ≤ t ≤ T − 1 where T is the latest time point of observation.205

In our analysis, T was February 20 of 2020,. For t = 1 or T , we apply two206

point averaging with 7/10 weight at t = 1 or T , and 3/10 for t = 2 or T − 1.207

Apply the same filtering on the recovered process R(t) and obtain R̄(t). To208

simplify the notation, we denote the filtered data Ī(t) and R̄(t) as I(t) and209

R(t) respectively, wherever there is no confusion.210

Hubei started to report the “clinically diagnosed” cases on February 12th211

(13th for city Xianning) which created spikes in the newly reported cases.212

We applied a one-off linear filter that re-distributes the spikes in the Hubei213

cities and Hubei to the previous 7 days with decreasing weights ranging from214

7/28 to 1/28.215

Let N(t) = I(t)+R(t) denotes the cumulative number of diagnosed cases216

and ∆N(t) = N(t + 1) − N(t) denotes the daily change. Let I(t + 1, t + 1)217

be the newly infected case at date t + 1. Then, ∆R(t) = R(t + 1)− R(t) =218

I(t)− I(t+ 1) + I(t+ 1, t+ 1) and ∆N(t) = ∆I(t) + ∆R(t) = I(t+ 1, t+ 1)219

which is the newly infected cases. Thus, conditional on I(t), (∆N(t),∆R(t))220

are conditionally independent Poisson random variables. There is a slight221

confusion between N(t) and N , as the latter is used to denote the total222

population size.223

We consider the likelihood for the vSIR-Poisson process framework for224

parameter estimation by treating β and γ as fixed and later we will relax it225

to allow they vary over a window of time t. Then,226

∆N(t) ∼ Poisson {β(t)S(t)I(t)/N} and ∆R(t) ∼ Poisson {γI(t)} .

The likelihood function for (∆I(t),∆R(t)) given I(t) and R(t) is227

L(β, γ) = f1(∆N(t)|I(t))× f2(∆R(t)|I(t)) (3)

where f1 and f2 are the conditional Poisson density functions. The log like-228

lihood based on the increments at t is229

l(β, α, γ) ∝ −β(t)s(t)I(t) + ∆N(t) log{β(t)s(t)I(t)} − γ(t)I(t)

+∆R(t) log{γ(t)I(t)}.
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As the population of each province/city is large and the number of total230

infected patients is still relatively small, the ratio S(t)/N appeared in (1) is231

very close to 1. By approximating S(t)/N = 1, the likelihood score equations232

are233

∂l

∂β
= −I(t) +

∆N(t)

β(t)s(t)
(4)

∂l

∂γ
= −I(t) +

∆R(t)

γ(t)
(5)

It can be checked that the score functions have (approximate) zero means.234

The approximation of S(t)/N = 1 is just to simplify the expression as every-235

thing carries through by using β̃(t) = β(t)s(t).236

While one can use the above likelihood based inference, an equivalent237

approach we use in our analysis is based on the (approximate) solution for238

I(t) via (6)239

I(t) ≈ I(t1) exp{(β(t)− γ)(t− t1)}, (6)

for t1 = t−w+1, · · · , t and a window w > 0 which satisfies w → 0 and Tw →240

∞. Here T is the total number of observational time for the processes. Take241

logarithm transform on (6), log{I(t)} ≈ log{I(t1)} + (β(t)− γ)(t− t1). We242

propose estimating β(t)−γ by a local linear regression of log{I(t)} on t− t1.243

The above log-linear regression may be viewed as a version of the Poisson244

increment mean model by noting that log{I(t)}−log{I(t1)} ≈ I(t)−I(t1)
I(t1)

which245

is approximately (β(t)− γ(t))(t− t1) in the mean.246

Let ̂β(t)− γ be the estimated slope from the local linear regression, and247

V̂ar(β(t)−γ) be the estimated variance of ̂β(t)− γ. Their close form expres-248

sions are provided in Section S.1 in SI.249

Let ∆δRt = Rt+δ−Rt for t = 1, · · · , T−δ. From the second score equation250

(5), we estimate γ(t) by the local least square fitting of ∆δRt on I(t) without251

intercept. Let γ̂(t) and V̂ar(γ̂) be the estimator of γ and its corresponding252

estimated variance, respectively. Their expressions are provided in SI. Then,253

β̂(t) = ̂β(t)− γ + γ̂ is the estimate for the varying coefficient β(t) in (1).254

The standard error of β̂(t) can be obtained as SEβ(t) = {V̂ar( ̂β(t)− γ) +255

V̂ar(γ̂) + 2Cov( ̂β(t)− γ, γ̂}1/2. The 95% confidence interval for β(t) can be256

constructed as257

(β̂(t)− 1.96SEβ(t), β̂(t) + 1.96SEβ(t)). (7)
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In the implementation, we chose δ = 1 and w = 5.258

To assess the goodness of fitting, Figure S1 in SI shows the observed259

infected number I(t) versus the fitted values by the proposed varying coef-260

ficient SIR model for 30 provinces in China. It demonstrates the proposed261

method is well suitable for the dynamics of COVID-19 outbreak. Figure S2262

in SI plots the estimated the effective reproductive number R14
t , calculated as263

R14
t = β̂(t)× 14, with its 95% confidence interval for 30 provinces in China.264

6. Effective Reproduction Number265

The effective reproduction number Rt is the most important parameter266

in determining the state of an epidemic. It measures the average number267

of infection made by an infectious person during the course of his/her being268

infectious. If Rt < 1(> 1) for t larger than a t0, then the epidemic will269

die down eventually (explode). There are two widely adopted definitions of270

R(t). One is based on the average duration of infection of the disease, and271

the other is via the removal rate γ(t).272

At a date t, the effective reproduction number based on an average infec-273

tious duration D is RD
t = β(t)D where β(t) is the daily infection rate at t.274

We do not adopt the version involving γ, the removal rate, since its estima-275

tion is highly volatile at the early stage of an epidemic. A general version of276

R(t) may be defined as
∫ t+D2

t−D1
β(u)du where positive D1 and D2 represent the277

infectious durations before and after diagnosis, respectively. The RD
t given278

above can be viewed as an approximation by the Mean Value Theorem in279

calculus with D = D1 +D2.280

Research works (Li et al., 2020; Guan et al., 2020; Chen et al., 2020) so far281

on COVID-19 have informed a range of duration for incubation, from onset282

of illness to diagnosis and then to hospitalization. The average incubation283

period from the three studies ranged from 3.0 to 5.2 days; the median dura-284

tion from onset to diagnosis was 4 days (Guan et al., 2020); and the mean285

duration from onset to first medical visit and then to hospitalization were286

4.6 and 9.1 days (Li et al., 2020), respectively. Based on a data sample of287

391 cases from Shenzhen, the average incubation period was 4.46 (0.26) days288

and the average duration from onset to hospitalization were 3.9 (0.19) days,289

respectively, where standard error is reported in the parentheses. Another290

dataset of 100 confirmed cases in Shaoyang (Hunan Province) revealed the291

average durations from onset to diagnosis and from diagnosis to discharge292
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were 5.67 (0.39) and 10.12 (0.43) days, respectively. There is a recent revela-293

tion (Guan et al., 2020) that asymptomatic patients can be infectious, which294

would certainly prolong the infectious duration.295

There are much variation in the medical capability in timely diagnosis and296

hospitalization (thus quarantine) of the infected across the country. Thus,297

the infectious duration D would vary among the provinces and cities, and298

would change with respect to the stage of the epidemic as well.299

Given the diverse range of infectious duration across the provinces and300

cities, in order to standardize and make the effective reproduction number Rt301

readily comparable, we calculated the RD
t based on three levels of D: 7, 10.5302

and 14 days, which represent three scenarios of responsiveness in diagnosing,303

hospitalization and hence quarantine of the infected. Calculation of the Rt304

at other duration can be made by inflating or deflating a RD
t proportionally305

to reflect a local reality.306

7. Reproductivity of COVID-19 in China307

By calculating the time-varying infection rate function β(t), we present308

in Figures 1 the time series of estimated RD
t at the three levels of D for309

the 30+15 provinces/cities from late January to February 17th. Figure 2310

displays four cross sectional R14
t and their confidence intervals on January311

27th, February 3rd, 10th and 17th, respectively.312

Figure 1 reveals a monotone decreasing trend for almost all the provinces313

and cities with only exceptions for Hubei, Guizhou, Jinlin, Neimenggu and314

Qinghai. Even for those exceptional provinces, the recent trend is largely de-315

clining. The non-monotone pattern for non-Hubei provinces were largely due316

to relative small number of infected cases and waves of introduced infections.317

However, the one for Hubei and Wuhan suggests low data quality and in par-318

ticularly under reporting and reporting delay. The epidemic statistics from319

Hubei and the city of Wuhan before January 21th were severely incomplete320

and with irregular patterns, as millions of people fled from Wuhan before the321

lockdown.This was the reason we start Hubei’s analysis from January 21th.322

The average R14
t among the 27 provinces (with confirmed cases on and323

prior to January 23rd) was 6.14 (1.49), and 7.59 (2.38) for 7 of the 15 Hubei324

cities on January 27. These levels were comparable to the level of R (6.47)325

given in (Tang et al., 2020).326

One week later on February 3rd, R14
t was averaged at 2.18 (0.67) for the327

30 provinces and 2.84 (0.59) for the 15 Hubei cities, indicating that cutting328
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off Wuhan and other cities, and the start of wearing face masks and self329

isolation at home from January 23th had contributed to 64.5% and 62.6%330

reduction in the R14
t . In the following week starting from February 4th, the331

average R14
t came down to 0.86 (0.38) for the 30 provinces and 1.23 (0.55) for332

the 15 Hubei cities on February 10th, representing further 60.5% and 56.7%333

reductions, respectively, during the second week. This reflects the beneficial334

effects of the continued large scale self-isolation within the extended spring335

festival holiday period.336

Table 1 provides the reproduction number RD
t at the two durations on337

February 10th. It shows that 5 provinces and 5 Hubei cities’ R14
t were signifi-338

cantly above 1 (at 5% significance level). There are 14 provinces and 2 Hubei339

cities’ R14
t were significantly below 1, which were 1 and 1 more than those a340

day earlier on February 9th, and 9 and 2 more than those on February 8th,341

respectively. If we use the shorter D = 10.5, 22 provinces and 11 Hubei cities342

had been significantly below 1 for 1-7 consecutive days. These indicated that343

the reproduction number Rt has showed signs of crossing below the critical344

threshold 1 in increasing number of provinces and cities in Hubei around345

February 8-10. An updated Table 1 for February 17th are available in Table346

2, which showed further improvement since February 10.347

On February 17th, R14
t of all provinces and cities under consideration348

have all been statistically significantly below 1, among which 22 provinces349

and 8 Hubei cities had been for at least seven consecutive days.350

Given the significant decline in the reproduction numbers, it was time to351

discuss the turning point for COVID-19 for China. If a province or city’s RD
t352

started to be below 1 significantly (at 5% level), we would say the province353

or city have showed signs of the turning point. Given the uncertainty with354

the data records, especially those large variation in daily infected numbers355

coming out of Wuhan and Hubei, the turning point of the epidemic would356

be confirmed if RD
t have been significantly below 1 for D1 days, where D1357

is the period of infection before diagnosis, assuming all diagnosed cases can358

be quarantine immediately. Based on the results in (Li et al., 2020; Guan359

et al., 2020; Chen et al., 2020), D1 = 7 may be considered. Then, based on360

this criterion, some of the 30+15 provinces/cities had already reached the361

turning point on February 17, and more would follow in the coming days362

according to latest Table 2363
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8. Prediction for Infection Rate and State Variables364

As RD
t = β(t)D, predicting β(t) is equivalent to predicting RD

t . From365

Figure 1 and Figure S2 in SI, we see that the overall trends of β(t) is de-366

creasing. But the rate of deceasing gets smaller as time travels. To model367

such trend, we consider the reciprocal regression368

β(t) =
b

tη − a
+ et (8)

with error et and unknown parameters a, b and η. The parameters a and b are369

estimated by minimizing the sum-of-squares distance between the estimates370

β̂(t) and their fitted values for a given η, and then the optimal η is chosen to371

be the one that gives the minimum mean square error over a set of candidate372

values from 0.5 to 5 with 0.1 increment. Let ã, b̃ and η̃ be the estimated373

parameters, and β̃(t) = b̃/(tη̃ − ã) be the fitted function. Figure S3 in SI374

shows the reciprocal model fits β̂(t) quite well for most of the provinces,375

especially those with large number of infected cases.376

With the fitted β̃(t), we project {S(t), I(t), R(t)} via the ODEs377

dŜ(t)

dt
= −β̃(t)Î(t)

Ŝ(t)

N
,

dÎ(t)

dt
= β̃(t)Î(t)

Ŝ(t)

N
− γ̂T Î(t), (9)

dR̂(t)

dt
= γ̂T Î(t).

where γ̂T is the estimated recovery rate at time T using the last five days’378

data. With the observed
{
S(T ), I(T ), R(T )

}
at the current time T as the379

initial values, numerical solutions
{

(Ŝ(t), Î(t), R̂(t)) : T ≤ t < ∞
}

for the380

system (9) could be obtained using the Euler method. Then, the end time of381

the epidemic can be predicted as tend = min
{
t : Î(t) < 1

}
, and the estimated382

final infected number is N̂final = R̂(tend) + Î(tend).383

To conduct statistical inference for the epidemic predictions, we use the384

bootstrap method. In particular, we generate parametric bootstrap resam-385

pled processes based on the vSIR model which facilitate the construction of386

prediction intervals. We regard that the increments of S(t) and R(t) follow387

the Poisson processes (Bretó et al., 2009) over time as388

−∆S(t) ∼ Poisson {β(t)S(t)I(t)/N} and ∆R(t) ∼ Poisson {γI(t)}
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where ∆S(t) = S(t+ 1)− S(t) and ∆R(t) = R(t+ 1)−R(t). With the esti-389

mated γ̂ and β̂(t), we generate bootstrap samples {(S(b)(t), I(b)(t), R(b)(t))}Tt=1390

of the original process for b = 1, 2, . . . , B.391

For each bootstrap resampled
{

(S(b)(t), I(b)(t), R(b)(t))
}T
t=1

, we obtain the

estimates βb?(t) and γb? for β(t) and γ in the same way as for the original
sample. Let β̄?(t) =

∑B
b=1 β

b
?(t)/B and γ̄? =

∑B
b=1 γ

b
?(t)/B be the average of

the bootstrap estimates. We employ the bias corrected bootstrap estimates
for β(t) and γ as

β̂b(t) = β̂(t) + (βb?(t)− β̄?(t)) and γ̂b = γ̂ + (γb? − γ̄?)

for b = 1, 2, . . . , B. We then use the reciprocal model (8) to project the392

future path of β̂b(t), and use the numerical solution of the vSIR ODEs to393

predict the end time and the accumulative number of final infected cases as394

we described in section 3.4. Let the bootstrap estimates for the peak time be395

{tbend}Bb=1. The 95% prediction interval for the peak time is constructed as the396

2.5% and 97.5% quantiles of {tbend}Bb=1. Similar bootstrap prediction intervals397

can be constructed for the final accumulative infection number Nfinal of the398

epidemic.399

9. Prediction Results400

Based on the estimated β(t) over time, we predict COVID-19’s future401

trajectories as solutions to the vSIR model. We used data up to February 19402

2020 for the prediction under three scenarios for the recovery rate γ. One uses403

the empirical estimate based on data to February 19th. As an effective cure404

for the virus has not been found, the estimated recovery rates are quite low.405

Among the provinces with more than 100 infections on February 19, Jiangsu406

had the highest recovery rate 0.08, followed by Jiangxi, Hebei, Shanghai,407

Shanxi, Chongqing, Henan (0.07). Hubei, the province at the center of the408

epidemic, is 0.025. The other scenarios was to choose γ = 1/14 and γ =409

0.1, which mean the average removal time from diagnosis was 14 and 10410

days, respectively, representing improvement in the treatment for COVID-19411

patients as time progressed.412

Tables 3 presents the 95% prediction intervals for the end times of the epi-413

demic and the cumulative number of infected at the ending. The trajectories414

of I(t) of the proposed vSIR model are presented in Figure 5 under the three415

scenarios of the recovery rate. The predicted infection number Î(t) is within416
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10% deviation from its observed value based on data up to Feb 19th, see417

Table A2 in SI for the detailed prediction error. From the trajectory of the418

vSIR model in Figure 5, for the non-Hubei provinces, the number of infected419

would quickly decease in late February and March with very few cases left in420

April under all the three scenarios. Some provinces with few number of total421

infected cases may end as early as March (Qinghai, Jilin, Gansu, Ningxia).422

For Hubei, with a higher recovery rate of 0.1, the duration of the epidemic423

would be shorten substantially. The ending time for Hubei is around June 20424

2020 with total number of infection in the range 73,857–74,596. This shows425

that improving the recovery rate is an efficient way to end the COVID-19426

infection early given the current decreasing trend of β(t), as it leads to the427

reduction of the infectious duration.428

10. Discussion429

The implications of China’s experience in combating COVID-19 to other430

countries facing the epidemic are two folds. One is to reduce the person-431

to-person contact rate by self isolation and curtailing population movement;432

another is to reduce the transmission probability by wearing protective wears433

when a contact has to be made.434

The eventual control of COVID-19 is rested on if the existing control mea-435

sures can be continued further for a period of time. The biggest challenges436

that can jeopardize the great effort from late January are from the impatient437

populations eager to get out of the self-isolation driven by either economic438

needs (migrant workers eager to coming back to cities for income) or people439

trying to escape from the boredness of self isolation while encouraged by the440

declining infections in the last two weeks. In any case, the vSIR model and441

its statistical estimation and inference can be used to model and the assess442

the COVID-19 epidemics in other countries.443
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Table 1: The reproduction number RD
t at two infectious duration: 10.5 and 14 days, for

the 30 mainland provinces and 15 cities in Hubei province on February 10th with extended
results on February 17th. The symbols + (−) indicate that the R14

t was significantly above
(below) 1 at 5% level of statistical significance, and the numbers inside the square brackets
were the consecutive days the R14

t were significantly below 1. The column ∆R gives the
percentages of decline in the R14

t from the beginning of analysis to February 10th (the
first two weeks of the analysis). The columns ∆R(1st), ∆R(2nd) and ∆R(3rd) are the
percentages of decline in the first week (January 27 to February 3rd), the second week
(February 3-10), and the third week (February 10-17), respectively.

Province/City R10.5
t R14

t ∆R ∆R(1st) ∆R(2nd) ∆R(3rd)

Wuhan 1.99+ 2.66+ 58.7% 45.9% 23.7% 72.5%
Ezhou 1.64+ 2.18+ 80% 79.3% 3.6% 67.7%
Hubei 1.48+ 1.98+ 74.2% 58.2% 38.3% 69.7%

Tianmen 1.33+ 1.78+ 75% 67.4% 23.4% 52.5%
Guizhou 1.25+ 1.67+ 62.4% 9.3% 58.5% 91.5%
Xiantao 0.99 1.32 76.9% 46.4% 57% 71.9%

Heilongjiang 0.95 1.27+ 81.8% 54.3% 60.3% 62.6%
Hebei 0.94 1.25+ 85.4% 82.4% 16.7% 70.5%

Xinjiang 0.9 1.2+ 75.6% 60.7% 37.9% 53.1%
Enshizhou 0.86−[5] 1.14+ 74.1% 60.3% 34.6% 76%
Jingzhou 0.85−[1] 1.14+ 84.8% 50.5% 69.3% 76.9%

Gansu 0.8 1.07 75.1% 47.8% 52.3% 100%
Jingmen 0.79−[1] 1.05 88.3% 77.1% 49.2% 84.1%
Huangshi 0.79−[1] 1.05 78.3% 31.2% 68.4% 83.6%

Anhui 0.74−[1] 0.99 88.3% 71.7% 58.7% 77.6%
Shanxi 0.74−[2] 0.98 86.7% 69.6% 56.1% 87.1%
Ningxia 0.73 0.97 84.9% 75.8% 37.6% 75.7%

Shandong 0.73−[2] 0.97 90.3% 84.5% 37.1% 80.3%
Jiangsu 0.72−[3] 0.96 87.1% 70.5% 56.1% 72.1%

Xianning 0.71−[4] 0.95 70.7% 21.6% 62.6% 33.6%
Shiyan 0.71−[1] 0.94 89.1% 72.4% 60.3% 67.5%
Jilin 0.7 0.93 80.4% 17.6% 76.1% 82.5%

Yichang 0.69−[3] 0.92 87% 56.6% 70% 75.7%
Huanggang 0.69−[3] 0.92 88.9% 60.7% 71.8% 89%

Tianjin 0.69−[4] 0.91 82.9% 51.8% 64.6% 64%
Hainan 0.68−[1] 0.91 80.9% 65.2% 45.2% 96.1%

Guangxi 0.66−[5] 0.88 81.6% 64.9% 47.8% 72.1%
Xiangyang 0.63−[3] 0.84−[1] 88.4% 57.9% 72.4% 80.8%

Sichuan 0.62−[5] 0.83−[2] 89.4% 78.5% 50.7% 47.6%

Continued on next page
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Table 1 – continued from previous page

Province/City R10.5
t R14

t ∆R ∆R(1st) ∆R(2nd) ∆R(3rd)

Jiangxi 0.61−[2] 0.82 90.8% 70.9% 68.5% 79.6%
Xiaogan 0.6−[1] 0.81 88.9% 61.5% 71.3% 50.1%
Hunan 0.57−[3] 0.76−[2] 91.5% 77% 63.2% 90.4%
Henan 0.56−[2] 0.75−[1] 93.2% 78.8% 67.8% 64.2%

Suizhou 0.52−[2] 0.69−[2] 88.2% 40.9% 80% 65.5%
Chongqing 0.51−[4] 0.68−[3] 90.4% 75% 61.6% 73.9%

Shaanxi 0.51−[3] 0.68−[2] 86.5% 63% 63.6% 72.9%
Neimenggu 0.49−[3] 0.66−[2] 82.4% 43% 69.1% 27.9%

Fujian 0.49−[6] 0.66−[4] 90.5% 76.2% 60% 76.9%
Guangdong 0.45−[3] 0.61−[2] 88.2% 54.4% 74.2% 62%

Liaoning 0.45−[6] 0.6−[2] 89.3% 72.7% 61% 81.7%
Beijing 0.45−[4] 0.6−[2] 90.3% 59.2% 76.2% 65.1%

Shanghai 0.34−[4] 0.46−[2] 92.1% 68% 75.2% 53.4%
Zhejiang 0.31−[4] 0.42−[3] 94.3% 77.9% 74.2% 86.3%
Yunnan 0.28−[7] 0.38−[5] 96.2% 86.8% 71.5% 30.8%
Qinghai 0.02−[4] 0.03–[3] 98.9% -1.6% 98.9% 100%
Ave(sd) 0.74(0.35) 0.98(0.47) 85.3% 64.2% 59% 71.6%
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Table 2: The reproduction number RD
t at two infectious durations: 10.5 and 14, for the 30

mainland provinces and 15 cities in Hubei province on February 17th. The symbols + (−)
indicate that the R10.5

t (R14
t ) was significantly above (below) 1 at 5% level of statistical

significance, and the numbers inside the square brackets were the consecutive days the
R10.5

t (R14
t ) were significantly below 1.

Province/City R10.5
t R14

t

Wuhan 0.55−[9] 0.73−[8]
Ezhou 0.52−[3] 0.69−[2]

Tianmen 0.63−[9] 0.85
Hubei 0.43−[3] 0.56−[2]

Sichuan 0.33−[19] 0.44−[16]
Xiantao 0.28−[14] 0.37−[13]
Tianjin 0.25−[11] 0.33−[10]

Heilongjiang 0.34−[7] 0.46−[5]
Shiyan 0.23−[15] 0.31−[14]

Neimenggu 0.36−[17] 0.47−[16]
Continued on next page
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Table 2 – continued from previous page
Province/City R10.5

t R14
t

Xiaogan 0.28−[14] 0.37−[13]
Xinjiang 0.42−[12] 0.56−[10]
Beijing 0.13−[11] 0.18−[9]

Jingzhou 0.19−[8] 0.25−[3]
Shaanxi 0.14−[17] 0.18−[16]

Chongqing 0.13−[11] 0.17−[10]
Henan 0.2−[9] 0.26−[8]
Hebei 0.26−[5] 0.35−[3]

Guangxi 0.17−[12] 0.23−[7]
Shanghai 0.16−[18] 0.21−[16]
Jiangsu 0.2−[10] 0.26−[6]

Jilin 0.11−[7] 0.15−[7]
Fujian 0.11−[13] 0.15−[11]
Shanxi 0.09−[16] 0.13−[14]

Yichang 0.17−[17] 0.22−[14]
Yunnan 0.2−[21] 0.26−[19]
Anhui 0.16−[8] 0.21−[7]

Xianning 0.47−[8] 0.63−[8]
Suizhou 0.18−[16] 0.25−[16]

Shandong 0.14−[12] 0.19−[9]
Guangdong 0.17−[10] 0.23−[9]
Xiangyang 0.12−[17] 0.16−[15]
Zhejiang 0.04−[18] 0.06−[17]

Enshizhou 0.2−[12] 0.27−[4]
Huanggang 0.07−[10] 0.09−[7]

Guizhou 0.11−[4] 0.15−[3]
Jingmen 0.12−[8] 0.16−[4]
Gansu 0−[7] 0−[6]
Hainan 0.03−[8] 0.04−[7]
Hunan 0.02−[10] 0.07−[9]
Ningxia 0.18−[9] 0.24−[9]

Huangshi 0.13−[8] 0.17−[7]
Jiangxi 0.12−[9] 0.16−[7]

Liaoning 0.08−[20] 0.11−[16]
Continued on next page

20



Table 2 – continued from previous page
Province/City R10.5

t R14
t

Qinghai 0−[4] 0−[4]
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Table 3: The 95% prediction intervals for the ending times, and the final accumulative
number of infected cases of COVID-19 epidemic in the 30 provinces based on data to Feb
19 2020 with γ = 0.1. The last column lists the total infected cases (I(t) + R(t)) as Feb
19, 2020.

Province Ending time N̂final Current

Hubei 6/20 - 6/21 73857 - 74596 62322
Guangdong 4/27 - 4/29 1368 - 1412 1347

Zhejiang 4/26 - 4/27 1225 - 1245 1195
Beijing 4/17 - 4/20 416 - 436 397

Chongqing 4/18 - 4/21 581 - 600 565
Hunan 4/21 - 4/23 1028 - 1046 1021

Guangxi 4/11 - 4/15 254 - 271 248
Shanghai 4/12 - 4/16 345 - 365 336
Jiangxi 4/23 - 4/25 969 - 994 955
Sichuan 4/25 - 4/28 589 - 619 525

Shandong 4/19 - 4/21 567 - 584 553
Anhui 4/26 - 4/28 1044 - 1068 1006
Fujian 4/13 - 4/16 306 - 320 299
Henan 4/29 - 5/1 1358 - 1387 1283
Jiangsu 4/20 - 4/23 662 - 687 640
Hainan 4/6 - 4/9 174 - 183 168
Tianjin 4/7 - 4/14 141 - 159 132
Yunnan 4/7 - 4/11 174 - 187 174
Shaanxi 4/12 - 4/16 262 - 276 250

Heilongjiang 4/23 - 4/26 519 - 554 479
Liaoning 3/31 - 4/3 120 - 126 122
Guizhou 4/4 - 4/10 150 - 165 147

Jilin 3/30 - 4/4 93 - 101 92
Ningxia 3/18 - 3/26 65 - 73 71
Hebei 4/12 - 4/16 319 - 336 312
Gansu 3/20 - 3/26 90 - 96 92

Xinjiang 3/31 - 4/9 78 - 96 78

Continued on next page
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Table 3 – continued from previous page

Province Ending time N̂final Current

Shanxi 4/1 - 4/5 134 - 142 134
Neimenggu 4/2 - 4/11 78 - 98 76

Qinghai 2/23 - 3/6 17 - 20 19
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(a) RD
t for 30 provinces

(b) RD
t for 15 cities in Hubei

Figure 1: Time series of the reproduction number RD
t at three infectious durations: D = 7

(red), 10.5 (orange), 14 (blue), for the 30 mainland provinces (a) and the 15 cities in Hubei
province (b) from Jan 21 to Feb 17 2020. The black horizontal line is the critical threshold
level 1.
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(a) R14
t for 30 provinces

(b) R14
t for 15 cities in Hubei

Figure 2: Elevated 95% confidence intervals (black) of the 14-day Rt for the 30 mainland
provinces (a) and the 15 Hubei cities (b) on Jan 27 (red), Feb 3 (orange), Feb 10 2020
(green) and Feb 17 (blue). The black horizontal lines mark the critical threshold 1.
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Figure 3: The estimated γ̂(t) from the varying coefficient SIR model (1) for the data to
Feb 17th 2020 for 30 provinces.

(a) vSIR model (b) vSEIR model

Figure 4: Epidemic progression networks under vSIR and vSEIR models
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(a) Predicted I(t) for Hubei

(b) Predicted I(t) for all provinces except Hubei

Figure 5: Predicted number of infected cases I(t) with 95% prediction interval for Hubei
Province in panel (a) and all other provinces combined except Hubei in panel (b). The grey
vertical line indicates the current date of observation; the blue solid line plots the observed
I(t) before Feb 19th; the blue dashed line gives the predicted I(t) with 95% prediction
interval (blue shaded area) with the estimated γ̂T; the pink vertical line indicates the peak
date of I(t); the orange and red dashed line gives the predicted I(t) with 95% prediction
interval (shaded area) with fixed recovery rate γ = 0.1 and γ = 1/14 respectively.
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