Author: | P-S Zhong and S. X. Chen |
Title: | P-S Zhong and S. X. Chen (2011). Tests for High Dimensional Regression Coefficients with Factorial Designs. Journal of the American Statistical Association, 106, 260-274. |
Code | |
R-code: #R-code for Zhong, PS and Chen, SX (2011) Tests for High #Dimensional Regression Coefficients with Factorial Designs. Journal of #the American Statistical Association, 106, 260-274. TestCoef<-function(p,n,rhop,eta,B) { m<-2*p-1 count<-1 non0<-sqrt(eta/5) beta<-c(rep(0,p-5),rep(non0,5)) set.seed(10000) mu<-runif(p,2,3) rho1<-runif(rhop,0,1) rho<-c(rho1,rep(0,p-rhop)) Gamma<-cbind(diag(rep(rho[1],p)),matrix(0,p,m-p)) for (i in 2:(p-1)) {Gamma<-Gamma+cbind(matrix(0,p,i-1),diag(rep(rho[i],p)),matrix(0,p,m-p-i+1))} Gamma<-Gamma+cbind(matrix(0,p,m-p),diag(rep(rho[p],p))) Tnvec<-NULL repeat { set.seed(Sys.time()) z<-matrix(rnorm(n*m,0,1),n,m) X<-z%*%t(Gamma)+matrix(rep(mu,n),n,p,byrow=T) Y<-X%*%beta+rnorm(n,0,2) TnStat1<-function(com) { k<-com[1] l<-com[2] s<-com[3] t<-com[4] Tn1<-sum((X[k,]-X[l,])*(X[s,]-X[t,]))*(Y[k]-Y[l])*(Y[s]-Y[t])/4 Tn2<-sum((X[k,]-X[s,])*(X[l,]-X[t,]))*(Y[k]-Y[s])*(Y[l]-Y[t])/4 Tn3<-sum((X[k,]-X[t,])*(X[s,]-X[l,]))*(Y[k]-Y[t])*(Y[s]-Y[l])/4 Tn<-(Tn1+Tn2+Tn3)/3 return(Tn) } XXn<-X%*%t(X) Y1<-sum(diag(t(X)%*%X))/n Y3<-(sum(XXn)-Y1*n)/(n*(n-1)) Y2<-(sum(XXn^2)-sum(diag(XXn^2)))/(n*(n-1)) XXn2<-XXn%*%XXn diagXX<-rep(diag(XXn),each=n-1) offdiagXX<-as.logical(lower.tri(XXn)+upper.tri(XXn)) VecOffdiagXX<-matrix(XXn,n^2,1)[offdiagXX] Y4<-(sum(XXn2)-sum(diag(XXn2))-2*sum(diagXX*VecOffdiagXX))/(n*(n-1)*(n-2)) Y5<-((n*(n-1)*Y3)^2-2*n*(n-1)*Y2-4*n*(n-1)*(n-2)*Y4)/(n*(n-1)*(n-2)*(n-3)) trSigma2<-Y2-2*Y4+Y5 Tn<-sum(combn(n,4,TnStat1))/choose(n,4) sigma2<-var(Y) varTn<-2*trSigma2*sigma2^2/(n*(n-1)) Tnvec<-c(Tnvec,Tn/sqrt(varTn)) count<-count+1 if (count>B) break; } rej2<-sum(Tnvec>qnorm(0.95,0,1))/B return(list(Ttest=rej2,eta=eta,Tn=Tnvec)) } p<-480 n<-50 rhop<-10 result11try<-TestCoef(p,n,rhop,0,1) |